Loading...
09-683 Final Acceptance of Origin and Alcove ArtCITY OF MERIDIAN BY THE CITY COUNCIL: 9 GST 7SZ • Z` /~~Oq AUNTY , ~~P.`: A RESOLUTION OF THE MAYOR AND THE CITY COUNCIL OF THE CITY OF MERIDIAN SIGNIFYING FINAL ACCEPTANCE OF "ORIGIN" AND WALL ART INSTALLATION FROM REFINERII, LLC, AND PROVIDING AN EFFECTIVE DATE. WHEREAS, with financial support from the City of Meridian and numerous donors, including major financial support in the form of a Public Art and Cultural Facilities Grant from the Idaho Commission on the Arts, and the leadership of the Meridian Arts Commission, J. Amber Conger, for Refinerii, LLC ("Artist") created, and installed at Meridian City Hall, two public art pieces for the City and people of Meridian: a metal and glass sculpture suspended over the main lobby of Meridian City Hall, entitled "Origin," and a metal and glass installation attached to the wall within the alcove leading into City Council Chambers; WHEREAS, both of these art pieces have been inspected and accepted by City, and the fabrication and installation of "Origin" has been found to be compliant with the Structural Design Calculations, attached hereto as Exhibit A; WHEREAS, pursuant to the Agreement For Professional Services/Meridian City Hall Artwork executed by the Parties on February 3, 2009 ("February 3, 2009 Agreement"), Artist submitted a Maintenance Plan for the art pieces, attached hereto as Exhibit B; submitted the schematics for operation of the winch and hoist system by which "Origin" is suspended, attached hereto as Exhibit C; and executed the Indernnification Agreement attached hereto as Exhibit D, and no waivers of interest in the art pieces will be required by City; WHEREAS, by these actions and submissions Artist did timely execute Final Completion as that term is defined by the February 3, 2009 Professional Services Agreement, and "Origin," and the alcove installation were dedicated to the people of the City of Meridian on May 19, 2009; NOW THEREFORE, BE IT RESOLVED BY THE MAYOR AND CITY COUNCIL OF THE CITY OF MERIDIAN CITY, IDAHO: Section 1. That the City of Meridian hereby accepts the delivery of "Origin" and the alcove installation as designed, created, and installed by Artist, and by this instrument the City conveys its Final Acceptance of these pieces, as that term is defined by the February 3, 2009 Agreement. Section 2. That this Resolution shall be in full force and effect immediately upon its adoption and approval. ~ ,/~ ADOPTED by the City Council of the City of Meridian, Idaho, this ~9~ Vday of October, 2009. APPROVED by the Mayor of the OF ME/ APPROVED: Mayor de Weerd °~~' RESOLUTION NO. Or1' ~a~ BIRD, HOAGLUN, ROUNTREE, ZAREMBA Idaho, this ~0\~ d y of October, 2009. sEn~y: ~~ ~' '~ O FINAL ACCEPTANCE MERIDIAN CITY HALL PUBLIC ART PROJECT EXHIBIT A STRUCTURAL DESIGN CALCULATIONS FOR MAIN ENTRY SCULPTURE MERIDIAN CITY HALL 33 E. BROADWAY AVE. MERIDIAN, IDAHO Prepared Bv: Dana M. Hennis, S.E. 3505 S. Locust Grove Rd. Kuna,ID 83634 (208) 949-1071 ~• ; 30 ~. ,,., Meridian City Hall Date and Time: 3/4/2009 3:44:08 PM MCE Ground Motion -Conterminous 48 States Zip Code - 83642 Central Latitude = 43.614721 Central Longitude = -116.416541 Period MCE Sa (sec) (%g) 0.2 032.8 MCE Value of Ss, Site Class B 1.0 010.0 MCE Value of S1, Site Class B Spectral Parameters for Site Class D 0.2 050.5 Sa = FaSs, Fa = 1.54 1.0 024.0 Sa = FvS1, Fv = 2.40 ~~ ~~,1D 33 5D~ ~ ~3~Ms `._____ ~o zy PROJECT NOTES 0 Y~4T = l ~ ~_ ~~ `1n2~ ~~ = s ~~rt~ h} ~~ a p =Z~S 1?=Zo~ ~~~o~-~ ~~ Tf~F •I Z.5 ~,~~ 0.0 ^4 G ~~, L3'-~,~ ~C ~- 1, 33~ Q 3l5(l~,0~ '~ 5 3~ Project Title ~~ ~~ ~ ~~` Project Locations ~ F=~ (~lA-{~1 ~ ~ Date Present Notes by: Page ~ of PROJECT NOTES Project Title Project No. Date Present ~.~Zu d e Z~511 Zit ~o" MtE1, ~ Z° µ i~l. Notes by: Page.~_ of PROJECT NOTES ~,,~li 3- z M. _ ~'_~ 5, 3 ~~'-~ ~ ~; G=T-=-~- ~- ~~ ~~ ~~®~I~ a l~,«5~ ~Z`~~ G~~~. d ~o ~~ o ~T-- 0 3C~~)-~~~-~) = ~ +~, ~s ~ e I`IZt~-Z L~ 7-~~+~~~~~ ~-uol~~ ~~~~ :. ~~~I~~~~o~~ 70 ! ~L 7~~~71 Project Title ~ ~, I Project N . Location Date ~ Present Notes of I~ I l w a O N ~" ~~ ~ ~.. ~M ~~~~ !` ~) t ~ ] ~. S u ; ~1 _l" ~;, ~ ~ ~) ~.l ~ ~ _~ ~~ ~^^~ V 1--~ ~~ ~ ~~e ~ ~ ~~ t~~~ R ~ ~ ~~~ ~~Q ~ ~ _~ ~ S ~~~ ~~ ~~ ni t~ $~~ ~ $ ~~~ ~ ~ i ~~ aoo oaoao aaooooo ~~. ~a 1 of S V' -~' ~~ ~~ Il ,%"'~• " r= ~ ~ ~js~ _~J ~l \~ ip 3 _~ ~~_ N~ ~~ ~~ :l .f/C{J (fU EPtI w AA'+~ lr4 siHl w (" J/Pi 1rU ~l • 1 I I I ~ lh+o bl) zall s a I I ------ f/ (fq fl w s rb n sz•n w znuz w ~ znlfz • ---1------- -- :¢ ~.t/[}7 (fl) Y~YI M ~ .1T fl ~YA%1 M R .T4+0-(Y{}~rDit M ~ ~ ~r/fb Z/~9Pr1 M S S .f/C~(fl) 9 tl M ahl .r~1S121tflD~tl 111 ~ .f~M (f~9D~/l w ~ .r~C~9 Z/~9AI%M I ~/.~ ' Q I I 9 I ,` ,~ F _ si ' - _ - -- - ' - .s/e{o lr~~fi M u+it M ::T ~ill .~i+ u7:{rsdn{ M ;:T rl wvl ~ -- I -' i • ' ~ 1 ~ ----- - ~ zalrs w _ _ •t----~----- -- _ f/t}a (rl) sgnl • 1~~ ~I~ JI '! r f+rD n LOM1I r = So I - ` c ~ iP1L w I 1 i ) -J u y ~ .f/f70 (ft) ZE•Y{ w .1~f41 (rITLW / w N OIY w ~ i ~ 1 iDNI w ~ ~ Q I • g Ns~a (n> rpfl w I~ :dz=a- t l w ola w i l i l~ r j I! ' iavt w I i I I g S C ,.. ~ ! .t/f~0 (~l)-Z~'Yt w ; (i~Wfl `l .f -i~2L4t ill Tf zPYt% i r I _.- -.__ 1 ' .-_ _ -i .f/~ (1t) L~{ M .f/CwJ l lMt w .f M/ fl ZAII M Tf zyyt r_ __ _i_-___- I I ftt) s~Rt w a .-i~- ft -za.i K '£ --_ihwbTza.%w a oTto~.i w ~~~ i ~ I ^ 1 c~u .1~~ M ~ --slaw if~iar%w-~ -_r/cb GTiant-M ~ ---//o-a (f~iani w f Rti Ci~ R 3 - s ~ s (Zl) /l~rLl M I I; r ~ ~Y~ r/ iPf{ M - -~.TS~~YI~LOY/ N -~ .YT ft tR11! I _____.__-f~_ __ {~{ N I i Q ill1L w O LMri w O iM/Z Y 2t~1 w JI O{W _ .%~ fl zoal M A _ 7f~-(fi}-ZDiI M _ _ .f~ Yt iAf{ M __ ill M I I I s ! I 7 z( Com osite Steel Beam Desi n File:c:l0ocumentsandSefbrgsldhennislMyDocumenLsrENERCALCDataFilesMiscRaming.ec6 p g ENERCALC, INC. 19832006. Ver. 6.0.20, N:35487 DeSCription : Typical pudin Material Properties Calculations per IBC 2006, CBC 2007, 13th AISC Analysis Method : ~ - ~ ~ ~ ~ ~ - ~ . Beam Bracing : Beam is Fully Braced against lateral-torsion buckling by attac '~° -1 Load Combination 2006 IBC & ASCE 7-05 ~_ ;.°'," : ~~ - ` . ~ ~ ,' _ : ~ _ :; °` : ~ ~ : `„ ;: `. Fy :Steel Yield : .. ksi E: Modulus : .. . ~ . ~ ksi Composite Beam Section Data Beam is UNSHORED for Concrete Placement Total Slab Thickness 4.0 in Concrete Pc 3.0 ksi Stud Diameter 3/4" in EBecBve Widlh 7.50 ft Concrete Density 145.0 pct On :Stud Capacity 11.0 k Metal Deck... Rib Height 2.0 in Top Width 5.OIn Ribs: Perpendicular Rib Spacing 12.0 in Btm Width 5.0 in W 14X26 Applied Loads Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.60, L = 0.3750 k/ft, Tributary WidN =1.0 fL Applied after curing DESIGN SUMMARY • - • Maximum Bending Stress Ratio = 0.545:1 Maximum Shear Stress Ratio = 0.124 c 1 Section used far this span W14X26 Section used for this span W14X26 Percent Composite Action 50 % Vu :Applied 13.1625 k Construction After Curing Vn/Omega :Allowable 106.123 k Mu :Applied 0.0 88.8429 k-ft Load Combination DL on StIBm Before Curing Mn /Omega :Allowable 100.299 163.070 k-ft Location of maximum on span 0.0 h Load Combination After Curing : +p+L+N Span # where maximum occurs Span # 1 Location of maximum on span 13.4094ft Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.295 in Max Upward L+Lr+S Deflection 0.000 in Live Load Deflection Ratio 1097 Max Downward Total Deflection 0.295 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 1097 Shear Stud Requirements From Support 1 (7c, to 26.82 ft use 18 studs. From 26.82 ft to support 2 use 18 studs. Maximum forces & Stresses for Load Combinations Load Comb & Design Length Max Slress Ratios Bending Summary ~ Shear Summary Span# M V Ma-Const MnS810mega Ma4~lonConst MnTr/Omega Va Vn/Om a eg Overall Maximums Span L = 27 ft 1 0.545 0.124 100.30 88.84 163.07 13.16 106.12 DL on StIBm Before Curing Span L=27N 1 ' DL on StIBm After Curing Span L=27fi 1 After Curing : +D Span L = 27 H 1 0.335 0.076 100.30 54.67 163.07 8.10 106.12 After Curing : +D+L+H Span L = 27 ft 1 0.545 0,124 100.30 88.84 163.07 13.16 106,12 Pnnletl'. 26 MAR 2009, 1:22PM Com osite Steel Beam Desi n File:c:lD000rrenls and Settings`dhemislMy DucumenlstENERCALC Data Fileslmisc franting.ecfi p g ENERCALC,INC. 198320C9, Ver.6.0.20, N:35487 r.rr -• !• Description : Typical pudin Load Comb & Design Length Maz Stress Ratios Bending Summary Shear Summary Span# M V Ma-Const MnS01 Omega Ma-NonConst MnTr/Omega Va VN Omega Hner ~unng : +u+~.r+n Span L = 27 ft 1 0.335 0.076 100.30 54.67 163.07 8.10 106.12 After Curing : +D+0.750Lr+O.750L.H Span L = 27 ft 1 0.492 0.112 100.30 80.30 163.07 11.90 106.12 Maximum Deflections for Load Combinations • Unfactored Loads Location Dead Load Deb Dead Load Deb Const Loads Non-Dead Total Load Combination Span in Span Before Cudng After Cudng Net Deb Load De0 Deflection Ixx -Used DL on Steel Alone BEFORE Curing Upward 1 27.000 0.0000 0.000 0.000 0.000 0.000 245.00 DL on Steel Alone BEFORE Curing Downward 1 27.000 0.0000 0.000 0.000 0.000 0.000 245.00 DL on Steel Alone AFTER Cudng Upward 1 27.000 0.0000 0.000 0.000 0.000 0.000 245.00 DL on Steel Alone AFTER Curing Downward i 27.000 0.0000 0.000 0.000 0.000 0.000 245.00 After Cudng:Dafter+Lr+L+S Upward 1 13.591 0.0000 0.000 0.000 0.295 0.295 529.29 After Cudng:Datter+Lr+L+S Downward 1 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 After Cudng:Datter+D+Lr+L Upward 1 13.591 0.0000 0.000 0.000 0.295 0.295 529.29 After Cudng:Dafter+D+Lr+L Downward 1 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 After Cudng:Dafter+D+L+S Upward 1 13.591 0.0000 0.000 0.000 0.295 0.295 529.29 After Cudng:Dafter+D+L+S Downward i 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 After Cudng:Dafter+D+L+W UpwaN i 13.591 0.0000 0.000 0.000 0.295 0.295 529.29 After Cudng:Datter+D+L+W Downward 1 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 After Cudng:Datter+D+L+S Upward 1 13.591 0.0000 0000 0.000 0.295 0.295 529.29 After Curing:Dafter+D+L+S Downward 1 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 After Cudng:Dafter+p+L+S Upward 1 13.591 0.0000 0.000 0.000 0.295 0.295 529.29 After Cudng:Dafter+D+L+S Downward 1 0.000 0.0000 0.000 0.000 0.000 0.000 529.29 Maximum Vertical Reactions - Unfactored Suppon notation :Far left is #1 Load Combinaton Support i Support 2 DL Applied Before Curing Lr+L+S 5.063 5.063 (Dbc-Dac)+Lr+L 5.063 5.063 (Dbc-Dac)+L+S 5.063 5.063 (Dbc-Dac)+L+W+SI2 5.063 5.063 (Dbc-Dac)+L+S+Wl2 5.063 5.063 (Dbc-Dac)+L+S+El1.4 5.063 5.063 Steel Section Properties : W14x26 Depth = 13.900 in I zx = 245.00 in^4 I yy = 8.910 in^4 Web Thick = 0.255 in S xx = 35.30 in"3 S yy = 3.550 in^3 Flange Width = 5.030 in R roc = 5.650 in R yy = 1.080 in Fange Thick = 0.420 in Zz = 40.200 in^3 Zy = 5.540 in^3 Area = 7.690 in"2 J = 0.358 in^4 Weght = 26.177 pg Composite Section Properties Span Number Anatysis %Shear Plastic N.A. Sum Dn # Studs per Mn -Capadty Moment of Inertia Pasts N. A. Loation Type Connection from Bottom Shear (k) 112 Span k-ft ISteel I-Trans I.Lwr Bound PNA in Flange 100.0 73.900 384.500 35 378.08 245.0 798.2 638.2 PNA in Flange 99.0 13.892 380.655 35 317.35 245.0 798.2 636.9 PNA in Flange 98.0 13.885 376.810 35 316.62 245.0 798.2 635.5 PNA in Flange 97.0 13.877 372.965 34 315.87 245.0 798.2 634.1 PNA in Flange 96.0 13.869 369.720 34 315.12 245.0 798.2 632.7 PNA in Flange 95.0 73.862 365.275 34 314.36 245.0 798.2 631.3 PNA in Flange 94.0 13.854 361.430 33 373.59 245.0 798.2 629.8 PNA in Flange 93.0 13.846 357.585 33 312.82 245.0 798.2 628.3 PNA in Flange 92.0 13.839 353.740 33 312.03 245.0 798.2 626.8 PNA in Flange 91.0 73.831 349.895 32 311.24 245.0 798.2 625.3 PNA in Flange 90.0 13.824 346.050 32 310.45 245.0 796.2 623.7 PNA in Flange 89.0 13.816 342.205 32 309.64 245.0 798.2 622.1 PNA in Flange 88.0 13.808 338.360 31 308.83 245.0 798.2 620.4 PNA in Flange 87.0 13.801 334.515 31 308.07 245.0 798.2 618.8 PNA in Flange 86.0 13.793 330.670 31 307.18 245.0 798.2 617.1 PNA in Flange 85.0 13.785 326.825 30 306.34 245.0 798.2 615.3 PNA in Flange 84.0 13.778 322.980 30 305.50 245.0 796.2 673.6 PNA in Flange 83.0 13.770 319.135 30 304.65 245.0 798.2 611.E Com osite Steel Beam Desi rt File:c:Nocumanls antl SetlingsWhennisLYly OecUmenlSttNhRI;ALG Uata HlesVnrsc ireming.ecti r p g ENERCALC, INC. 198&2008, Ver: 6.0.20, N:35487 r Description : Typical pudin Composite Section Properties Span Number Anatysis °h Shear Plastic N.A. Sum (M # Studs per Mn -Capacity Moment of Inenia Plastic N. A. Location Type Connection from Bottom Shear (k) 1/2 Span k-ft (Steel I-Trans 11wr Bound P m ange -609 PNA in Flange 81.0 13.755 311.445 29 302.92 245.0 798.2 608.1 PNA in Flange 80.0 13.747 307,600 28 302.05 245.0 798.2 606.2 PNA in Flange 79.0 13.739 303.755 28 301.17 245.0 798.2 604.2 PNA in Flange 78.0 13.732 299.910 28 300.28 245.0 798.2 602.3 PNA in Flange 77.0 13.724 296.065 27 299.38 245.0 798.2 600.3 PNA in Flange 76.0 13.717 292.220 27 298.48 245.0 798.2 598.2 PNA in Flange 75.0 13.709 288.375 27 297.56 245.0 798.2 596.7 PNA in Flange 74.0 13.701 284.530 26 296.64 245.0 798.2 594.0 PNA in Flange 73.0 13.694 280.685 26 295.72 245.0 798.2 591.8 PNA in Flange 72.0 13.686 276.840 26 294.78 245.0 798.2 589.6 PNA in Flange 71.0 13.fi78 272.995 25 293.84 245.0 798.2 587.4 PNA in Flange 70.0 73.fi71 269.150 25 292.89 245.0 798.2 585.1 PNA in Flange 69.0 13.6fi3 265.305 25 291.93 245.0 798.2 582.8 PNA in Flange 68.0 13.655 261.460 24 290.97 245.0 798.2 580.4 PNA in Flange 67.0 13.648 257.615 24 290.00 245.0 798.2 578.0 PNA in Flange 6_° n 13.fi40 253.770 24 289.02 245.0 798.2 575.5 PNA in Flange 65.0 13.632 249.925 23 288.03 245.0 798.2 573.0 PNA in Flange 64.0 13.625 246.080 23 287.04 245.0 798.2 570.5 PNA in Flange 63.0 1:f.u17 242.235 23 286.03 245.0 798.2 567.9 PNA in Flange 62.0 13.610 238.390 22 285.02 245.11 798.2 565.2 PNA in Flange 61.0 13.602 234,545 22 284.01 245.0 798.2 562.5 PNA in Flange 60.0 13.594 230.700 21 282.98 245.0 798.2 559.8 PNA in Flange 59.0 13.587 226.855 21 281.95 245.0 798.2 557.0 PNA in Flange 58.0 13.579 223.010 21 280.91 245.0 798.2 554.1 PNA in Flange 57.0 13.571 219.165 20 219.86 245.0 796.2 551.2 PNA in Flange 56.0 13.564 215.320 20 218.81 245.0 798.2 548.2 PNA in Flange 55.0 13.556 211.475 20 277.75 245.0 798.2 545.2 PNA in Flange 54.0 13.548 207.630 19 276.68 245.0 798.2 542.2 PNA in Flange 53.0 13.541 203.785 19 275.60 245.0 798.2 539,0 PNA in Flange 52.0 13.533 199.940 19 274.52 245.0 798.2 535.8 PNA in Flange 51.0 13.525 796.095 18 273.43 245.0 798.2 532.6 PNA in Flange 50.0 13.518 192.250 78 272.33 245.0 798.2 529.3 PNA in Flange 49.0 13.510 188.405 18 271.22 245.0 798.2 525.9 PNA in Flange 48.6 13.503 784.560 17 270.17 245.0 798.2 522.5 PNA in Flange 47.0 13.495 180.715 17 268.99 245.0 798.2 519.0 PNA in Flange 46.0 13.487 176.870 17 267.86 245.0 798.2 515.4 PNA in Web 45.0 13.472 173.025 16 271.25 245.0 798.2 511.8 PNA in Web 44.0 13.321 169.780 1fi 270.46 245.0 798.2 508.1 PNA in Web 43.0 13.170 165.335 16 269.61 245.0 798.2 504.3 PNA in Web 42.0 13.019 161.490 15 268.72 245.0 798.2 500.5 PNA in Web 41.0 12.868 757.645 15 267.78 245.0 798.2 496.6 PNA in Web 40.0 12.778 153.800 14 2fi6.79 245.D 798.2 492.6 PNA in Web 39.0 12.567 149.955 74 265.75 245.0 798.2 488.5 PNA in Web 38.0 12.416 146.110 14 264.66 245.0 798.2 484.4 PNA in Web 37.0 12.265 142.265 13 263.51 245.0 798,2 480.1 PNA in Web 36.0 12.115 138.420 73 262.32 245.0 798.2 475.8 PNA in Web 35.0 11.964 734.575 13 261.07 245.0 798.2 471.4 PNA in Web 34.0 11.813 730.730 12 259.77 245.0 798.2 466.9 PNA in Web 33.0 11.6fi2 126.885 12 258.41 245.0 798.2 462.4 PNA in Web 32.0 11.511 123.040 12 257.00 245.0 798.2 457.7 PNA in Web 31.0 17.367 119.195 ii 255.54 245.0 798.2 ~ 453.0 PNA in Web 30.0 11.210 175.350 11 254.02 245.0 798.2 448.1 PNA in Web 29.0 11.059 111.505 11 252.44 245.0 798.2 443.2 PNA in Web 28.0 10.908 107.660 10 250.81 245.0 798.2 438.2 PNA In Web 27.0 10.757 103.815 10 249.12 245.0 798.2 433.0 PNA in Web 26.0 10.607 99.970 10 247.38 245.0 798.2 427.8 PNA in Web 25.0 10.456 96.125 9 245.57 245.0 798.2 422.4 CSHOA Engineers Title : Job # C.W. Moore Plaza Dsgnr: 250 South 5th Sreet Project Desc.: Boise, ID 83702 Project Notes Pooled: 26MM 2069, 1:25PM St@2~ B@attl ~QStylt File: c:lDocumenk and SelAn9aldhennkwly DocumenklENERCALCDa1a Files4nisc frdmirg.ec6 ENERCALC,INC. 19832(108. Vec 6.0.20, N:35487 Description : Pudin wlo composite action Material Properties _ _ camalaeons per lac zoo6, cec zoo7,13tn Alsc Analysis Mefhod : Allowable Stress Design Fy :Steel Yield : 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling E: Modulus : 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 W 14X26 Applied Loads Load for Span Number t Uniform Load : D = 0.60, L = 0.3750 kRt Tributary Width =1.0 fl DESIGN SUMMARY Maximum Bending Stress Ratio = 0.886: 1 SOction used for this span W14X26 Mu :Applied 88.843 k-ft Mn /Omega :Allowable 100.299 k-ft Load Combination +D+L+}{ Location of maximum on span 13.591 ft Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.638 in Max Upward L+Lr+S Deflection 0.000 in Live Load Deflection Ratio 507 Max Downward Total Deflection 1.659 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 195 Load Combination Service loads entered. Load Factors will be applied for calculations. ]esinn O Maximum Shear Stress Ratio = Section used for this span Vu :Applied Vn/Omega :Allowable Load Combination Location of maximum on span Span # where maximum occurs Span # M V Mmax + 0.186: 1 W14X26 13.1625 k 70.890 k +p+L+}I 0.000 ft Span # 1 Overall MAXimum Envelope Dsgn. L = 27.00 ft 1 0.886 0.186 88.84 88.84 167.50 100.30 1.00 1.00 13.16 106.34 70.89 Dsgn. L = 27.00 ft 1 0.545 0.114 54.67 54.67 167.50 100.30 1.00 1.00 8.10 106.34 70.89 +D+L+}{ Dsgn. L = 27.00 ft i 0.886 0.186 88.84 88.84 167.50 100.30 1.00 1.00 13.16 106.34 70.89- rD+Lr+H Dsgn. L = 27.00 ft 1 0.545 0.114 54.67 54.67 167.50 100.30 1.00 1.00 8.10 106.34 70.89 +D+0.750Lr~.750L+H Dsgn. L = 27.00 ft 1 0.801 0.168 80.30 80.30 167.50 100.30 1.00 1.00 11.90 106.34 ' 70.89 Overall Maximum Deflections - Unfactored Loads _ Load Combination Span Max. "-' Detl Location in Span Load Combination Max. °•' Defl Location in Span Maximum Deflections for Load Combinations • Unfactored Loads Load Combination Span Max. Downward Defl Loction in Span Max. Upward Defl Caption in Span D Ony 1 1.0207 13.591 0.0000 0.000 LOnly 1 0.6379 13.591 0.0000 0.000 Lr+L+S 1 0.6379 13.591 0.0000 0.000 D+L+Lr+S 1 1.6586 13.591 0.0000 0.000 Maximum Vertical Reactions - Unfadored Support 8 Load Combinati Support Reaction Support 1, (D+L+Lr+S) --- ~- ~--~- 13.163 k -----~~- CSHQA Engineers Title : Job # C.W. Moore Plaza Dsgnr: 250 South 5th Sreet Project Desc.: Boise, ID 83702 Project Notes Steel Beam Desi n File:clDocumenls and SettlngsdhmnislMy DocumenlsrENERC4LC Daly FilesMisc frarttiig:ecfi g ENERCALC. INC.19832006. Ver.6.0.20. N:35907 Description : Pudin wlo composite action Vertical Reactions - Unfactored Support natation : Far IeR is #1 Load Combination Support 1 Support 2 Overall N1AXimum 13.163 13.163 D Only 8.100 8.100 Lr Only L Only 5.063 5.063 S Only Lr.i+S 5.063 5.063 - W Only E Only H Onty DaL+Lr+S 13.163 13.163 Steel Section Properties : W14X26 Depth = 13.900 in I xx = 245.00 in"4 J = 0.358 in^4 Web Thick = 0.255 in S xx = 35.30 in"3 Cw = 405.00 in"6 Flange Width = 5.030 in R xx = 5.650 in Flange Thick = 0.420 in Zx = 40.200 in^3 Area = 7.690 in"2 lyy = 8.970 in"4 Weight = 26.177 plf S yy = 3.550 in"3 Wno = 17.000 in"2 Kdesign = 0.820 in R yy = 1.080 in Sw - 8.950 in^4 K1 = 0.750 in Zy = 5.540 in^3 Of = 6.760 in"3 its = 1.310 in rT = 1.280 in Chv = 19.700 in"3 Yog = 6.950 in ~~~ _. ~ o~= zX= z~~ a~~~ Sn = ~j'~r,~ i ~k~ -~ ~.- - , "~ ~tN-, f t~= .Z~ 1 I ~0,'?~~,~,~ S- 0 3 Cu/° ~~ In W t~FO =' _ ~~o ~_'~ ~ t~ ~,~ = gin. i .: L ~~.~ ~~ = ~~ ~, ~~~~J = ~7 ~~~ = ~> zd'`~ ~-- its, ~~~ °~ ~: ~~~~' ~~- S -~~ ~- _ Tu fi ___ ~~_~~~~ =~1, ~~5~ ~zss~~~`4sx ao~ i) - ~r i ~~~ --~ _. u _ . 53x7 ~~s ~ ~, 1~~ ~~ C~ -fo~ ~ _~/~ ~~~ ~ ~~ C'~~~:-- ~~Z~s~. fo~~~~ v __ ~_ - _ ~~~~ ~ - ; _ M = ~-~ ~o C,T -- ~ -- ~ gk~ -_ __ __ 1-122 is :.~~.~~_ ,.. i TORSION PROPERTIES W shapes I Torsional Warping ~ _ _ Normalized Warping Warping Statical Statical D i ti Co ~stant Constant ' , / Constant Moment Moment . gna es on C,. ~ Y K'~ $. 0~ Q,, In" In' In. In.2 In' In.' In.' W 14x53 1.94 2540 58.1 26.7 35.5 17.3 43.6 x48 1.46 2240 83.7 26.5 31.6 15.6 39.2 x43 7.05 1950 69.3 26.2 27.8 73.9 34.8 W 14x38 0.80 1230 63.2 23.0 20.0 11.5 30.7 x34 0.57 1070 69.6 22.8 17.5 10.2 27.3 x30 0.38 887 77.7 22.6 14.7 8.59 23.6 1W i4z26 ~ 0.35 : ~ 405 - 54.1 : > 75.9 '- ~ 8.94 '- 8.96 20a x22 0.21 314 62.6 16.8 7.02 5.58 16.6 W 12x336 243 57000 24.7 46.4 459 119 301 x305 1&5 48600 26.1 45.0 403 107 269 x279 143 42000 27.6 44.0 357 96.3 241 x 252 108 35800 29.3 42.8 313 86.4 214 x 230 83.8 31200 31.7 41.8 279 78.4 193 x210 64.7 27200 33.0 41.0 249 71.1 774 x 190 48.8 23600 35.3 40.1 220 64.1 156 x 170 35.8 20100 38.3 39.2 192 56.9 137 x 152 25.8 17200 41.5 38.4 168 50.4 121 x136 18.5 14700 45.3 37.7 148 44.5 707 x 120 12.9 12400 50.0 37.0 126 38.9 932 x 106 9.13 10700 55.0 36.4 110 34.6 81.9 x96 6.86 9410 59.6 35.9 98.2 37.3 73.6 x 87 5.10 8270 64.8 35.5 87.2 28.0 66.0 x 79 3.84 7330 70.3 35.2 78.1 25.3 59.5 x 72 2.93 6540 76.0 34.9 70.3 22.9 53.9 x65 2.18 5780 82.9 34.5 62.7 20.6 48.4 W 12x58 2.10 3570 66.4 28.9 46.3 18.2 43.2 x53 1.58 3180 72.0 28.7 41.2 16.3 39.0 W 12x50 1.78 1880 52.3 23.3 30.2 14.7 36.2 x45 1.31 1850 57.0 23.1 26.7 13.7 32.4 xd0 0.95 1440 62.5 22.9 23.6 11.8 28.8 W 12x35 0.74 879 55.4 19.6 18.8 9.86 25.6 x30 0.48 720 83.9 19.4 13.9 8.30 21.6 x26 0.30 607 72.4 19.2 11.8 7.15 18.6 W 12x22 0.29 164 38.1 12.0 5.13 4.87 14.7 x79 0.18 131 43.4 11.8 4.14 4.01 12.4 x 16 0.10 96.9 49.4 11.7 3.09 3.04 10.0 x 14 0.07 80.4 54.4 11.8 2.59 2.59 8.72 AlH$BiCAN INSrmrre OP $Taffi. CoNSTRUCI'ION 1-26 4 Y k, k d x x T W SHAPES r„. Dimensions k b, Web Flange Distance Deslg- Area Depth Thlckness ~, Wldth Thlckness T k k nation A d r„, 2 6, t, ~ In.Z In. In. In. In. In. In. In. In. W 14x132 38.8 14.66 14% 0.845 Ye Mie 14.725 14z/i 1.030 1 11'/. 1"/e '35e x120 35.3 14.48 14'h 0.590 Ys 94e 14.870 14% 0.940 '%e 11'4 is/e +3'ie x109 32.0 14.32 14z/a 0.525 'h '/~ 14.605 14$ 0.860 'h 71'/+ 1Nie ~h x99 29,1 14.16 14'h 0.485 'h Yi 14.565 14% 0.780 z/+ 11+/+ Y/e ~/e x 90 26.5 14.02 14 0.440 ~/a Y~ 14.520 74'h 0.710 '%a 11'A 1'/e ~/a W 14x 82 24.1 14.31 14V+ 0.510 'h '/. 10.130 10`A 0.855 ~/e 11 1Ye 1 x 74 21.8 14.17 14'/e 0.450 ~/e +/. 10.070 10'/e 0.785 'i5c it 1Ke 1e/,s x 68 " ~ 20 0 1404 - 14 __ 0.415 ~ z/+e _ '/+ _ _10.035 10 0 720 ~'i 11 1'/z '3'ie X 61 17.9 13.89 1(~% Od75 'Ye 3ie 9.995 _ 10 ~ 0645` ~-%'_- 11 - -1~/s +4'ie - W 14x 53 15.6 13.92 13~b 0.370 3'e e/ia 8.080 8 0.660 '+/a 11 lzhe 'Ke x 48 14.1 13.79 133'i 0.340 4'ie Ks 8.030 8 0.595 % 11 13e 'b x 43 12.6' 13.66 13% 0.305 4'is iSs 7.995 6 0.530 'h it tie ~/e W 14x 38 112 14.10 14'/s 0.310 e/ia 34s 6.770 63'+ 0.515 'h 12 1'/~c % x 34 10.0 13.98 14 0285 3'ia %e 6.745 6~'i 0.455 %e 12 1 3'e x 30 8.85 13.84 13~h 0270 '/. 'h 6.730 6Y. 0.385 9S 72 'fie % W 14x'26 7.69 19.91 ~13~/e 0255 Y+"- K 5.025 5 -. - 0.420 ~ ~ha 12 !?/~; Yie x 22 6.49 13.74 13z/i 0230 '/ 'h- 5.000 5 0.335 Wm 12 z/e '/c Na in H P 1 1 1 .4nmuuc~n Irisrrrure ex, Sx~r. Consrxucnon rr Y k~ k W SHAPES d x x a Properties rw k br Nam- Compact Section Elastic Properties Plastic inai Criteria Modulus per W f d F" r, d Axis X-X Axis Y-Y Zrr r ~ r ~ ~ ~ Ft I S r I S r L0. Ksi Ksi In. In.' In' In. In.° In.' in. Ins In' 132 7.1 - 22.7 - 4.05 0.97 1530 209 6.28 548 74.5 3.78 234 113 120 7.8 - 24.5 - 4.04 1.05 1380 190 6.24 495 67.5 3.74 212 102 109 8.5 58.6 27.3 - 4.02 1.74 7240 173 6.22 447 61.2 3.73 192 92.7 99 9.3 29.2 - 4.00 1.25 1110 157 6.17 402 55.2 3.71 173 83.6 90 10. 40.4 31.9 - 3.89 1.36 999 143 6.14 362 49.9 3.70 757 75.6 82 5.9 - 28.1 - 2.74 1.65 862 723 6.05 148 29.3 2.48 139 44.8 74 6.4 - 31.5 - 2.72 1.79 796 112 6.04 134 26.6 2.48 126 40,6 68 7.0 - 33.8 57.7 2.71 1.94 ~ _ 723 _ ~ ~~ 103 6.01 121 24.2 2.46 115 36.9 61 7.7 - 37.0 49.1 2.70 2.75 840 92.2 5.98 107 21.5 2.45 102 32.8 53 6.1 - 37.6 46.7 2.15 2.62 541 77.8 5.89 57.7 14.3 1.92 87.1 220 48 8.7 - 40.6 40.2 2.13 2.89 485 70.3 5.85 51.4 12.8 1.91 78.4 19.6 43 7.5 - 44.8 32.9 2.12 3.22 428 62.7 5.82 45.2 17.3 1.89 69.6 17.3 38 6.6 - 45.5 31.9 1.77 4.04 385 54.6 S.B7 26.7 7.88 1.55 61.5 12.1 34 7.4 - 49.1 27.4 1.76 4.58 340 48.6 5.83 23.3 6.91 1.53 54.6 10.6 30 8.7 55.3 57.3 25.1 1.74 5.34 291 42.0 5.73 19.6 5.82 1.49 47.3 8.99 ''26 6.0 -.- 54.5 :222 12B 6.59 - 245 - 353 '5.,, ~ :-. 97 : - ~f-.06. X40.2 ,;.5.54 22 7.5 - 59.7 18.5 1.25 8.20 199 29.0 5.54 7:00 2.80 7.04 332 4.39 At~rcv+ risrmrre or Stsat. CoeanucraH rGJ T Torsional ErM RestraMb Concentraletl torque et Case 3 ~~ X I T X a Left Ertl RIpM EnE a = 0.5 on member wtlh a=0.5 ` Rrned g=e"=0 Pinned B=B"=0 gonad entls 0 0.1 0.2 0.3 0.4 OS 0.6 0.7. U.n uy +.0 Fraction of Span Length -r/L Case 3 a"' x (GJ x aZl T Torsional EM Restraints Concentrated tgque al l T' 11 Left Fsd Rigid End a= 0.5 an member wlm a=0.5 ~m J rt+-at I Plm,ed a=e^=o Pinned a=a"=o Pinnedenas e 0 'a O O p~ !~ 63 \ IZ 0 0.1 0.2 03 0.4 0.5 0.6 0.7 O.8 0.9 1.0 Fraction of Span Length-rll Case 3 0 x GJ x 1 T Torsional End Restraints Concentrated torque at T ( ~ Len Entl Right End a= 0.5 an member wnh a=0.5 °r v t=°)~ Pinnetl B=6"=n Pinnetl 8=9"=0 Pinned ends a e w_ t; 0 0.1 0.2 03 0.4 OS 0.6 0.7 0.8 Q9 1.0 - Fraction of5pan Length-r/f Case 3 e• x (TJl T Torsonal End Restaints ~r,~,q~~ ro,q,re at l ) Len End RIgM End a= 0.5 m membm wiM a=0.5 m t-eLJ Pinned 8=B"=0 Pinrred B=a"=0 pinned ends C 0 a tl 0 F° 62 4~ 0 0.1 0.2 0.3 0.4 OS 0.6 0.7 0.8 0.9 1.0 Fraction of Span Length-r// Title : Job # Dsgnr: Project Desc.: Project Notes Composite Steel Beam Design /Descdption : Typcial Comp Girder Loading Ver.6.0.20, Material PrOpe111B5 Calculations per 18C 2006, C8C 2007, 13th AISC Analysis Method r- Beam Bracing : Beam is Fully Braced against lateral-torsion buckling by attac ~,:; ~ * -:: Load Combination 2006 IBC & ASCE 7-05 ~• Fy :Steel Yield : ksi E: Modulus : ~ ksi Beam is SHORED for Concrete Placement Composite Beam Section Data " Total Slab Thickness 6.0 in Concrete Pc 3.0 ksi in Stud Diameter 3/4 Effecfive Width B.0 ft Concrete Density 145.0 pd On :Stud Capacity 11.0 k Metal Deck... Rib Height 2.0 in Top Width 5.0 in 0 i Width 5 Ribs: Perpendicular Rib Spacing 12.0 in . n Btm W24X62 ~ Applied Loads Load for Span Number 1 Uniform Load : D = 2.20, L = 1.3750 k/ft, Tributary Width =1.0 ft UMMARY DESIGN S _ Maximum Bending Stress Ratio = 0.708: 1 Section used for this span W24X62 Percent Composite Action 25 Construction After Curing Mu :Applied 0 402.169 k-ft Mn /Omega :Allowable 0 568.349 k-ft Load Combination +D+L+H Location of maximum on span t4.8993ft Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.330 in Max Upward L+Lr+S Deflection 0.000 in Live Load Deflection Ratio 1092 Max Downward Total Deflection 0.857 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 420 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio = Section used for this span Vu :Applied Vn/Omega :Allowable Load Combination Location of maximum on span Span # where maximum occurs .176: 1 w2axsz 53.6250 k 305.120 k 0.0 ft Span # 1 Shear Stud Requirements f ~~s*~w From Support 1(d) to 29.80 ft use 21 studs. t From 29.80 ft to support 2 use 21 studs. Maximum Forces & Stresses for Load Combination _- Load Comb & Design Length Max Stress Ratios Bending Summary Shear Summary Span # M V Ma Max Mn /Omega Va Vn /Omega Overall Maximums Span L = 30 ft 1 0.708 0.176 402.17 568.35 53.63 305.12 +p Span L = 30 0 1 0.435 0.108 247.49 568.35 33.00 305.12 +D+L+H Span L = 30 ft 1 0.708 0.176 402.17 568.35 53.63 305.12 +O+Lr+H ~~ Span L = 30 ft 1 0.435 0.108 247.49 568.35 33.00 , 305.12 +D+p.750Lr+0.750L+H Title : Job # Dsgnr Project Desc.: Project Notes Composite Steel Beam Destgn r.rr . Description : Typcial Comp Girder Loading Load Comb & Design Length Max Stress Ratios Span # M V ending Summary Ma Maz Mn 1 Omega ENERCALC, INC. 1983-2008, Ven 6.0.20, N:35487 - ~ _ Shear Summary Va Vn I Omega Span L = 30 ft 1 ~ 0.640 0.159 363.50 568.35 48.47 305.12 Maximum Deflections for Load Combinations • Unfactored Loads Span Deflection Location Moment of Inertia Load Combination in Span Ixx-Used ISYeeI I-Turns Iper C-13-1 Iper C-13-2 D Only Upward 1 0.5273 15.101 2,650.190 0.000 0.000 0.000 0.000 D Only Downward 1 0.0000 0.000 2,650.190 0.000 0.000 0.000 0.000 L Only Upward 1 0.3296 15.101 2,650.190 0.000 0.000 0.000 0.000 L Only Downward 1 0.0000 0.000 2,650.190 0.000 0.000 0.000 0.000 Lr+L+S Upward 1 0.3296 15.101 2,650.190 0.000 0.000 0.000 0.000 Lr+LaS Downward 1 0.0000 0.000 2,650.190 0.000 0.000 0.000 0.000 D+L+Lr Upward 1 0.8569 15.101 2,650.190 0.000 0.000 0.000 0.000 p+L+Lr Downward 1 0.0000 0.000 2,650.190 0.000 0.000 0.000 0.000 D+Lr+S Upward 1 0.5273 15.101 2,650.190 0.000 0.000 0.000 0.000 D+Lr+S Downward t 0.0000 0.000 2,650.190 0.000 0.000 0.000 0.000 Maximum Vertical Reactions - Unfactored Support notation : Far left is #1 Load Combinatlen Support 1 Suppon 2 __ D Only 33.000 33.000 L Ony 20.625 20.625 Lr+i+S 20.625 20.625 D+L+Lr 53.625 53.625 p+Lr+S 33.000 33.000 Steel Section Properties : W24X62 DePN - = 23.700 in - I xx = 1,550.00 in"4 I yy = 34.500 in^4 Weh Thick = 0.430 in S xx = 131.00 in^3 S yy = 9.800 in^3 Flange Width = 7.040 in R xx = 9.230 in R yy = 1.380 in Flange Thick = 0.590 in Zx = 153.000 in"3 Zy = 15.700 In"3 Area = 18.200 in"2 J = 1.710 in"4 Weight = 67.953 plf Composite Section Properties Span Number Anaysis %Shear Plastic N,A. Sum On # Studs per Mn -Capacity Moment of Inertia Plastic N. A. Location Type Connection from Bottom Shear (k) t/2 Span k-ft I-Steel I-Trans I-Lwr Bound PNA in Flange 100.0 23.700 910.000 83 1,188.59 1,550.0 1 550 0 4,790.8 4 790 8 3,877.1 3 870 8 PNA in Flange 99.0 23.687 900.900 82 1,186.90 , . , . , . PNA in Flange 98.0 23.674 891.800 82 7,185.16 1,550.0 4,790.8 3,864.3 PNA in Flange 97.0 23.661 882.700 81 1,183.38 1,550.0 4,790.8 3,857.7 PNA in Flange 96.0 23.648 873.600 80 1,181.57 1,550.0 4,790.8 3,850.8 PNA in Flange 95.0 23.635 864.500 79 1,179.72 1,550.0 4,790.6 3,843.8 PNA in Flange 94.0 23.622 855.400 78 1,777.84 1,550.0 4,790.8 3,636.7 PNA in Flange 93.0 23.610 846.300 77 1,775.91 1,550.0 4,790.8 3,829.3 PNA in Flange 92.0 23.597 837.200 77 1,173.95 1,550.0 4,790.8 3,827.8 PNA in Flange 91.0 23.584 828.700 76 1,177.95 1,550.0 4,790.8 3,874.7 PNA in Flange 90.0 23.571 819.000 75 7,169.92 L550.0 4,790.8 3,806.7 PNA in flange 89.0 23.558 809.900 74 1,167.84 1,550.0 4,790.8 3,798.0 PNA in Flange 88.0 23.545 800.800 73 1,165.73 1,550.0 4,790.8 3,789.7 PNA in Flange 87.0 23.532 791.700 72 7,163.58 1,550.0 4,790.8 3,781.2 PNA in Flange 86.0 23.519 782.600 72 1,167.40 1,550.0 4,790.8 ~ 3,772.5 PNA in Flange 85.0 23.506 773.500 71 1,159.17 1,550.0 4,790.8 3,763.6 PNA in Flange 84.0 23.493 764.400 70 1,756.91 1,550.0 4,790.8 3,759.5 PNA in Flange A3.0 23.480 755.300 69 1,154.67 1,550.0 4,790.8 3,745.1 PNA in Flange 82.0 23.467 746200 68 1,152.28 1,550.0 4,790,8 3,735.6 PNA in Flange 81.0 23.454 737.100 68 1,149.90 1,550.0 4,790.8 3,725.8 PNA in Flange 80.0 23.441 728.000 67 1,147.49 1,550.0 4,790.8 3,715.8 PNA in Flange 79.0 23.429 718.900 66 7,145.05 1,550.0 4,790.8 3,705.6 PNA in flange 78.0 23.416 709.800 65 1,142.56 1,550.0 4,790.8 3,695.1 PNA in Flange 77.0 23.403 700.700 64 1,140.04 1,550.0 4,790.8 3,684.4 PNA in Flange 76.0 23.390 691.600 63 1,137.48 1,550.0 4,790.8 3,673.4 PNA in Flange 75.0 23.377 682.500 63 1,134.88 1,550.0 4,790.8 3,662.2 PNA in Flange 74.0 23.364 673.400 62 1,732.25 1,550.0 4,790.8 3,650.8 PNA in Flange 73.0 23.351 664.300 61 1,729.57 1,550.0 4,790.8 3,639.1 PNA in Flange 72.0 23.338 655.200 60 1,126.87 1,550.0 4,790.8 3,627r~~ PNA In Flange 71.0 23.325 646.100 59 1,124.12 7,550.0 4,790.8 3,674. M tl ~UUIUUU PNA in Flange 70.0 23.312 637.000 58 1,121.33 1,550.0 4,790.8 3,602 Title : Job # Dsgnr: Project Desc.: Project Notes 2:45PM Composite Steel Beam Design INC. 19632008. Ver. 6.0.20, Description : iTypcial Comp Girder Loading Composite Section Properties Span Number Analysis °~ Shear Plastk N.A. Sum Ctn # Sfuds per Mn - Capacdy Moment of Inertia Plastic N. A. Loption Type Connection from BoBOm Shear (k) 112 Span k-ft ISteel I-Trans I-Lwr Bound -" m ange PNA in Flange 68.0 23.286 618.800 57 1,115.66 1,550.0 4,790.8 3,576.6 PNA in Flange 67.0 23.273 609.700 56 1,112.76 1,550.0 4,790.8 3,563.2 PNA in Flange 66.0 23.261 600.600 55 1,109.83 1,550.0 4,790.8 3,549.6 PNA in Flange 65.0 23.248 591.500 54 1,106.86 1,550.0 4,790.8 3,535.7 PNA in Flange 64.0 23.235 582.400 53 1,103.85 1,550.0 4,790.8 3,521.4 PNA in Flange 63.0 23.222 573.300 53 1,100.81 1,550.0 4,790.8 3,806.9 PNA in Flange 62.0 23.209 564.200 52 1,097.73 1,550.0 4,790.8 3,492.0 PNA in Flange 61.0 23.196 555.100 51 1,094.61 1,550.0 4,790.8 3,476.9 PNA in Flange 60.0 23.183 546.000 50 1,091.45 1,550.0 4,790.8 3,461.4 PNA in Flange 59.0 23.170 536.900 49 1,088.26 1,550.0 4,790.8 3,445.5 PNA in Flange 58.0 23.157 527.800 48 1,085.03 1,550.0 4,790.8 3,429.4 PNA in Flange 57.0 23.144 518.700 48 1,081.76 1,550.0 4,790.8 3,412.8 PNA in Flange 56.0 23.131 509.600 47 1,078.46 1,550.0 4,790.8 3,396.0 PNA in Flange 55.0 23.118 500.500 46 1,075.12 1,550.0 4,790.8 3,378.7 PNA in Web 54.0 23.035 491.400 45 1,093.31 1,550.0 4,790.8 3,361.2 PNA in Web 53.0 22.823 482.300 44 1,090.99 1,550.0 4,790.8 3,343.2 PNA in Web 52.0 22.611 473.200 44 1,088.49 1,550.0 4,790.8 3,324.8 PNA in Web 51.0 22.400 464.100 43 1,085.82 1,550.0 4,790.8 3,306.1 PNA in Web 50.0 22.188 455.000 42 1,082.98 1,550.0 4,790.8 3,286.9 PNA in Web 49.0 21.977 445.900 41 1,079.95 1,550.0 4,790.8 3,267.4 PNA in Web 48.0 21.765 436.800 40 1,076.74 1,550.0 4,790.8 3,247.4 PNA in Web 47.0 21.553 427.700 39 1,073.35 1,550.0 4,790.8 3,227.0 PNA in Web 46.0 21.342 418.600 39 1,069.78 1,550.0 4,790.8 3,206.2 PNA in Web 45.0 21.130 409.500 38 1,066.02 1,550.0 4,790.8 3,185.0 PNA in Web 44.0 20.918 400.400 37 1,062.06 1,550.0 4,790.8 3,163.3 PNA in Web 43.0 20.707 391.300 36 1,057.94 1,550.0 4,790.8 3,141.1 PNA in Web 42.0 20.495 382.200 35 1,053.62 1,550.0 4,790.8 3,118.4 PNA in Web 41.0 20.283 373.100 34 1,049.10 1,550.0 4,790.8 3,095.3 PNA in Web 40.0 20.072 364.000 34 1,044.40 1,550.0 4,790.8 3,071.7 PNA in Web 39.0 19.860 354.900 33 1,039.49 1,550.0 4,790.8 3,047.,6 PNA in Web 38.0 19.649 345.800 32 1,034.39 1,550.0 4,790.8 3,022.9 PNA in Web 37.0 19.437 336.700 31 1,029.09 1,550.0 4,790.8 2,997.8 PNA in Web 36.0 19.225 327.600 30 1,023.59 1,550.0 4,790.8 2,972.1 PNA in Web 35.0 19.014 318.500 29 1,017.88 1,550.0 4,790.8 2,945.8 PNA in Web 34.0 18.802 309.400 29 1,011.97 1,550.0 4,790.8 2,919.0 PNA in Web 33.0 18.590 300.300 28 1,005.85 1,550.0 4,790.8 2,891.6 PNA in Web 32.0 18.379 291.200 27 999.52 1,550.0 4,790.8 2,883.7 PNA in Web 31.0 18.167 282.100 2fi 992.98 1,550.0 4,790.8 2,835.1 PNA in Web 30.0 17.956 273.000 25 986.23 1,550.0 4,790.8 2,805.9 PNA in Web 29.0 17.744 263.900 24 979.26 1,550.0 4,790.8 2,776.1 PNA in Web 28.0 17.532 254.800 24 972.06 1,550.0 4,790.8 2,745.6 PNA in Web 27.0 17.321 245.700 23 964.65 1,550.0 4,790.8 2,714.5 PNA in Web 26.0 17.109 236.600 22 957.01 1,550.0 4,790.8 2,682.7 PNA in Web 25.0 16.897 227.500 21 949.14 1,550.0 4,790.8 2,650.2 Title : Job # Dsgnr: Project Desc.: Project Notes Pnmetl: 9 Steel Beam Design Description : Typical zasnn+ N:35487 Material Properties calcuations penec zoos, cec zoo7, 13th AISC Analysis Method : Allowable Stress Design Fy :Steel Yield : 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling E: Modulus : 29,000.0 ksi Bending Axis : Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 W24X62 30.0 ft Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 2.20, L = 1.3750 k/ft, Tributary Width =1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 1.072: 1 Section used for this span W24X62 Mu :Applied 409.139 k-ft Mn /Omega :Allowable 381.737k-ft Load Combination +p+L+H Location of maximum on span 15.101 ft Span # where m~cimum oxurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.564 in Max Upward L+Lr+S Deflection 0.000 in Live Load Deflection Ratio 638 Max Downward Total Deflection 1.491 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 241 Maximum Forces & Stn Load CombinaAon Segment Length Span# Maximum Shear Stress Ratio = Section used for this span Vu :Applied Vn/Omega :Allowable Load Combination Location of maximum on span Span # where maximum occurs Mmax+ Mmax Cb Rm Va Maz ~- __ U.268 : 1 W24X62 54.5543 k 203.820 k +p+L+H 0.000 ft Span # 1 Dsgn. L = 30.00 ft 1 1.072 0.268 409.14 409.14 637.50 381.74 1.00 1.00 54.55 305.73 203.82 Dsgn. L = 30.00 A 1 0.667 0.166 254.46 254.46 637.50 381.74 1.00 1.00 33.93 305.73 203.82 +DiL.ii Dsgn. L = 30.00 A 1 1.072 0.268 409.14 409.14 637.50 381.74 1.00 1.00 54.55 305.73 203.82 +D+Lr+H Dsgn. L = 30.00 A i 0.667 0.166 254.46 254.46 637.50 381.74 1.00 1.00 33.93 305.73 203.82 +D+0.750Ln0.750L+H Dsgn. L = 30.00 A i 0.970 0.242 370.47 370.47 637.50 381.74 1.00 1.00 49.40 305.73 203.82 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max.' " DeFl LopAcn in Span Load Combination Max.'+' DeA Location in Span D+LaLr+S 1 1.4905 15.101 0.0000 0.000 Maximum Deflections for Load Combinations - Unfactored Loads Load Combination Span Max. Downward DeA Location In Span Max. Upward DeA Location in Span D+LiLr+S 0.5635 15.101 0.5635 15.101 1.4905 15.101 0.0000 0.000 0.0000 0.000 0.0000 0.000 Title : Jab # Dsgnr: Project Desc.: Project Notes Steel Beam Description : Typical Girder loading DocumenlslENERCALC Data FilesMisc.ec6 :ALC, INC. 1963NOa Var 6.0.20. N:35487 Maximum Vertical Reactions - Unfactored Support & Load Combinati Support Reaction __ Support 1, (D+L+Lr+S) 54.554 k Vertical Reactions - Unfactored Support notation :Far left is #1 Load Comhinadon Supportl Supporti Overall PAAXimum 54.554 54.554 D Only 33.929 33.929 Lr Onty L Only 20.625 20.625 S Only Lr.L+S 20.625 20.625 W Only E Only H Only D~+Lr+S 54.554 54.554 Steel Section Properties : W24X62 Depth = 23.700 in I xz = 1,550.00 in^4 J = 1.710 in"4 Web Thick = 0.430 in S xx = 131.00 in"3 Cw = 4,620.00 in^6 Flange WidN = 7.040 in Rxx = 9.230 in Flange Thick = 0.590 in Zz = 153.000 in^3 - Area = 18.200 in"2 I yy = 34.500 in"4 Weight = 61.953 pH Syy = 9.800 in^3 Wno = 40.700 in^2 Kdesign = 1.090 in R yy = 1.380 in Sw = 42.200 in"4 K1 = 1.063 in Zy = 15.700 in"3 Or = 22.500 in"3 ns = 1.750 in rT = 1.710 in Q•x = 75.300 in"3 Ycg = 11.850 in ~3 1 _ PROJECT NOTES ~ I-I-~l aL ~ct I ~CC71F~ ~t'~ ~J ~~ ('~~F~ I `I-~ ~Sa ~ f~~,~f3L,~E." 'z~-I,x ~Z o d=Z~,7y -~ ~~ _ - ?~ ~i ~.= ld,Zt~Z. Zx= !5s® i*t`~ ® ,I~ P DD ~~1~' tv~ ~/~ - 3/~~j = . r z~ v~ , ~/~ - fit, - I ~- ~~ =a875 ~>< u /~^ 21 aN3~ ~- 3 ~- ~t~d,~K L3~ ~~ ~d~~~ _T_ ~ t ~P~i2- Project Title Location Present ~~ EQ~'T~ Project N . Date Notes by: Page •f~d^ I of PROJECT NOTES e ~~ ~®~~ ~J 3 '~ ~~ST S vV1`=- ~D'~ ~~= 5"°~~- I~O~~ ~" -fir = ~ - 3571 (~, ,~7oe~~ ~t~~t° ~~'~~~~ ~/~-,~-.d7~ ~ ~Z --r~~~t ~ , D2 ~ t1~ ~~ ~T ~~~I', ~- ~~~~ = o IQZ ~- l,~ ~~ ~~~`"~~ ~~~~ ~ ~u~~~ 1/-1~1p~~2) :~ ~- - ~ Q K R j tt 2- IA/ 13oc.T ~/ ° ,, a ' !D, 20~ ~ ~~ = , s3~-~o~J =~ ~.~, Project Title Present Project N . Date Notes by: of SHAPED GUSSET JE, EACH SIDE -(4) ~"DIAM. GRADE 8 BOLTS TO EXISTING BEAM FLANGE 3~° DIAM. PULLEY PLATE. FOR BRACING, S" STANDARD PIPE, AS SLEEVE FOR HANGING PIPE OF SCULPTURE ALIGNMENT COGS (E) W14z26 BEAM i' GRADE B PIN FOR CABLE ATTACHMENT ~' CLAMPING PLATE OVER (E) BEAM FLANGE 3" STANDARD PIPE, AS SLEEVE FOIj'}W PIPE OF SCU T RI OSECTION J O 1 HEAD CONNECTION DETAIL SCALE 3/4" = 1'-0" DRAWING TITLE: HEAD CONNECTION DETAIL MERIDIAN CITY HALL SCULPTURE 33 E. BROADWAY AVE. °ORIGINS" SE MERIDIAN, IDAHO .~ F DRAWING NUMBER S-1 SHEET REFERENCE: SCALE: 3/4' ~ T-0' DATE: 5/7/09 SCULPTURE MAIN ~0 ° CEILING LINE HANGING PIPE, 2 ~" Mi' STANDARD PIPE ------ - - ~" CLAMPING PLATE (E) BEAM FLANGE Q2) 3g'" DIAM. PULLEYS FORS CABLE ALIGNMENT UNDER GIRDER TYP 3 16 A (E) W24x62 GIRDER ~" MOUNTING PLATE UNDER- (E) BEAM FLANGE, W/BOLTS THROUGH TO CLAMP PLATES (4) e' GRADE 8 BOLTS ~ CLAMPED TO (E)BM FLANGE 3~' PULLEY W/CABLE,- EACH END, W/GRADE 8 AXLE ROD ~" SHEVE PLATE EACH- SIDE OF PULLEYS O SECTION t 2 GIRDER PULLEY DETAIL SCALE 1' = 1'-0" DRAWING TITLE: GIRDER PULLEY DETAIL MERIDIAN CITY HALL. SCULPTURE 33 E. BROADWAY AVE. 'ORIGINS" S.E MERIDIAN, IDAHO 9'~q M P Hi DRAWING NUMBER S-2 SHEET REFERENCE: SCALE t ~ T-0' DATE: 5/7/09 ~~ RETAINER PIN TYP. OF (3) O SECTION - 3~' DIAM. PULLEY W/~' DIAM. AXLE BOLT .-(E) W14x26 BEAM - PULLEY W/ CABLE 3~6-p -<TYP. ~" PLATE 3 3 REAR PULLEY DETAIL SCALE 1" = 1'-0" DRAWING TITLE: REAR PULLEY DETAIL MERIDIAN CITY HALL SCULPTURE 33 E. BROADWAY AVE. "ORIGINS° Rd. $.E. MERIDIAN, IDAHO ~ rOF' ~Nq M. H DRAWING NUMBER S-3 SHEET REFERENCE: SCALE: ~" ° T'0~ DATE: 5/7/09 (4) ~" GRADE 8 BOLTS THROUGH (E)BEAM FLANGE ELECTRIC CABLE HOIST B 4' GRADE 8 BOLTS FO CABLE ATTACHMENT TO CONNECTION PLATE s HITCH PIN THROUGH< SIDE PLATES AND CONN. PLATE SHEVE PLATES, A (E) W14x26 BEAM (4) ~" GRADE 8 BOLTS THROUGF BEAM FLANGE (4) ~" GRADE 8 BOLTS, MOTOR TO MOUNTING PLATE (E) W14z26 BEAM ~" MOUNTING PLATE, MOTOR TO BEAM (N) CABLE HOIST AND MOTOR ©SIDE VI W e' MOUNTING PL. TYP. ~ ~ ~ CONNECTION PL. s W/SLEEVES FOR CAE OSECTION e' GRADE 8 SOLT i-PL TO PL. / r 0 4 CABLE LOCK DETAIL SCALE 1' = 1'-0' DRAWING TITLE: CABLE LOCK DETAIL MERIDIAN CITY HALL SCULPTURE 33 E. BROADWAY AVE. °ORIGINS" O rf OF ' ANA M. H MERIDIAN, IDAHO DRAWING NUMBER S-4 SHEET REFERENCE: SCALE: r - r-o• DATE: 5/7/09 ~(E)W24X62 GIRDER (E)W14X26 BEAM (E)W24X62 GIRDER CABLE ROUTE /~ S11 S?2 S-3 S-4 HANGING SCULPTURE i / \ S 2430 ON~~rF pF ~~P~O ~ 9 NA M HENa , 5 OVERALL LAYOUT @ 2ND FLR FRMG y`~~ SCALE 1/8" = 1'-0" DRAWING TITLE: DRAWING NUMBER OVERALL CABLE AND PULLEY LAYOUT S-5 MERIDIAN CITY HALL SCULPTURE sHEETRERERENDE: 33 E. BROADWAY AVE. MERIDIAN, IDAHO SCALE: ot~ M ~~, s.~ vs• - r-o• "ORIGINS° 3505 S. Locust Grove Rd. DATE: Kuna, ID 83634 (208) 94&1097 dhennis~dearxire.net 5/7/09 FINAL ACCEPTANCE MERIDIAN CITY HALL PUBLIC ART PROJECT ExHia-r 8 ORICII`I MAINTENANCE PLAN JUNE 13, 2009 J. AMBER CONGER, REFINERII Keep free of dust with along-handled duster If more than dusting is required; lower sculpture using the hoist: see Hoist Operation-Fig. 1. Lower sculpture until plumb-bob is just above floor; remove plumb-bob by releasing the set screws on the center-pipe. Lower sculpture until the lowest point is just above floor. Sculpture must be held in place by hand to prevent it from spinning, while it's cleaned. Clean metal surfaces with a soft cloth & dust removal product (like Pledge). Use caution around the points of the star, as they are delicate & bend easily. Glass may be cleaned with a soft cloth & glass cleaner. Do not spray glass cleaner onto the metal surfaces. Once every 5 years all nuts & bolts on the sculpture & the center-pipe should be checked for tightness. Alcove art: Clean glass as needed with glass cleaner & soft cloth. Do not spray glass cleaner on the steel pieces; wet cloth & rub glass. Use caution not to apply pressure to glass (especially the Idaho). Clean steel surfaces with dust removal product (like Pledge). Please call for assistance with the 1~ lowering of the sculpture, or for any questions. 1. Amber Conger 208-861-7515 208-861-7155 Email: ~ ~ ~ __ ViQDO(O c+Q J~ ~~<+nQ~urpo mnm~or~ n~ <+~~ n ~n K - ch--O -N O ~} S c+~p O ~_ ~ S N U1 ~ D c+ ~L_~ lnS~ P cF - ~ (~ P Z ~ n .+'~N~ SP r0 ~o ~+ ~ ~n P N .+`G S ' rp ~ 0 ~ ~ ~ ~ ~ _ `G_~ -p~ ~~ DUI (OS 3 -~O Sn c} ~+ ~ ~_ Q `~ ~ Q N O ~ to ~ ~ Q rap o~~Q~~~Q _ ^~~~. om~~o ~o ., QP ~o Q~D~v ~ ~ ~ Ut SN ~ O ~ S ~ I_ ~ N ~ Z ~ p ~ ~i- N O fTl ~ P P n ~ QS^~ ~n ~+ 0 o°--.+~.nS~ 5 ~ ~ Q 3 ~ S S ~ ~ (p ~ ~ N Q ~ ci- UI ~ -A S S S S ~ N O ~ ~ Q p ~ ~-QQ ~+s~ O 3 S `< ~ Q ~ ~ ~ Qo D S a n ~ ~ N c~F Q rF- ~ ~ (O _~ ~ ~ ~. N ~ ~ n (O N Qci-SQ W O S P ~ I F N 3 rp V1 ~ ~n o ~ a ~ ~ ~~~+o~ <+s~~o D ~ O S N 'S 7C (O -- ~ ~} S ~ P ~ Ilj ~ ~ c} r0 '~ S ~ N nP`0~<+ rp ~ ~ ~ S _ ~+ ~ (D ~ ~ ~} ~} S n ssSO_ ~ ~ p ~ UI ~ ~ ~~ c+ r0 ~+ 3 ~, ~+ ~ ~p ~} O S ~ ~ ~ n m ~ n ~ ~ a O O a Q ~ ~ D O Q.~~~~ ~ ~ a ~ ~ ~ n Q ~s~ o ~o ~- r0 ~ m ~ <~' O P .a o ~ ~+ ~~~`0 ~ ~ S rp ~ O P `~ U1 U1 ~, ~+ ~ O - c~F ~ U ~ ~ S ~ rp O ~{- 3 ~ ~ O I~ ~ O 0 Ut Ut fU P P I ~~ rp N O h h 5 ~~ n m v~ ~ 3 ~ ~ ~ ~ Q ~ O 3 ~ n ~o 3 o ~ N Q° ~ N U_ Q A ~ S ~ N Q- ~ ~ ~~ ~ O O 3 3 0 I----i m~ I I D H z -- -~ - _ - - FINAL ACCEPTANCE MERIDIAN CITY HALL PUBLIC ART PROJECT EXHIBIT C _~ ~ T o y F~~ O F od ~ m s ~ ~ ~ ~o ~ ~ . a 'c g p7 L i O ~ B R m a+ S "`~D D D O ~ "~ C ~`~~ A ~ T Ny ~ s `~ ~ O n ~ A ~ y T V m Z N a y Q 2 n ti O m ay d- a ~ _ '3 N ~ T O ro ~ ~ /per rn 1 3N ~ ~ r / ~ °' N o ° ~ ~ ~ 0 O o.Q d ~ O ~ N ~• O \V a~ g y p "~I O Z '~ ~H °: 370 ~ D Z 0 0 =' _ mo y Zap= o~ t71~ •. .. Cp0 ~ r ~ ~a .~.~ r ~ y ~ 0 ~ 00 6 ~ 3 • mm N a $ m u 0 S m nS m 1 c m N n o m mm° a a° m o o c o o a m c° m rD'Dys o(~~ cm m~°.& foam m..°o y^J ro om ~+.~ »o»s 3 °m ° ONrD ~ av~ ~m ~c omit' '^? pv' Q~ yo. 2DDr O m no ~j m'n ~O y^ N N7 Z m 0 0 n ~ o~ ~~ ~ m~ y o g m ?: ' o o ~ 'L Z m .°i n m~ C N ~ N O O m .1 a? G y s D m y .cm.. ~ m o ° m a c na ~~ ° d m 3 OCJ ym02 $+mm m amp=. gn ,a m mm T Sr - vOOOm d~D ~ c'~c vo ~vwy d m? jm .C m'~mx <00 c mmc ~~ m~'m o'. ~' o ~. ay T 3 x= 9 9 O N C m ~~ ~' ~ c m~° m m a m c y 3 ~ 0 Z W ~~y3 O ~O d yc~ mn= ~ ^ N'z m ~_ n mm_° ~.m O a 2Zi~ ~ d W m m~~ cm ~~a~ g< 3 ao ~.m t' 7 CO< O ~ m m,c mm y°,~y cm ~' `°03+ n»n r G O O O V O y m S '2 m~ ?: 3 o n m ~ m C y - ~yD Q°op9n m ~m'~ mm a~cm. S~ m 'z" m N A m0~ a o"c m o 0 °o d H S 9 TC2 A 3 ~ mom N mm° ~~ m o-m m AI r.~r n m 3n ~ ~ of no a m ° o y O Z a~ D m N~ ~' m o n m o. c 3 y y ss3 ,Q m~ g aroma c ~ m~ o m 0 a 0 p ?. N w F ~' ~ m ~ w o m c A T o' F o 0 OCZ ~o ~= s f.v = m o,a m T C y10 mo a omc ~ c d 9 T o00 ~~ n o3i m» F m H c T O CY9~ cN 2 my n ~ m` y m n ry m 5; ° ~ ° n 3 3°t '.. ~ cC :. fJl A .~ W N ~ N < ~ .,~~~ ~'t 0.I f~D ~ ~ 0 3 00 ~'c ~ "p ~ ~ : 3 : m ~O H ~ ~ a E ~ i ~~ ~ 3 O n p y ~ 3 m k 3 m d .~ N ~ ' m ~ 3 r w ~ O ~i'~if••' ~ . - ~ y ~ ~ (~ v rJi Q 1 ~ ~ m ~ ~ ~ a ; Q ~ VI ~~~ 3 ~ y ' ;~. < fD N (D . . J YI N f0 J pl 7 `G N 3 ~ n~ m -^ m a n c w w -~ ~i cn w w o- a~ ~ w ~ N `G (n O 00+ Xr W N~ A O V ~ D ~ Ti, OC) S ~ ~ J' Q L~ 3 n N N O (D ~ 1 _ ry d O II N ~ ~ II II II II II I II II O ~ ~ N ~ II II II ~ ~~ j ~ ~ S (D J O O 0 ~' ~ (~ [O N N = O O, £ W N A (ll V W ~ 0 ~ ~ T T d N $ ~ ~*i. ~ ~ ~ , .~ ~ ~ ~ _ ~ O O -J^' C m V an h_. NON 001 N ~ 3 3 . H. wT~ O ~ O O =!0 3 41 yw Nm me oocn G< 0 n mm ]., O n ti. O~ Z 3 33 0~ vvv nn ~: $ ~ - :N.~ ~ O JOWn» 3 a ~ 3 , 'J"~ O -n ^ z m =~ ~ ~ a O 1 0 S O S Q 0 0 0 O 0 ,'; . ~~~ S O~~ m o oaoo ~nwN-. ~ c o ~T ~ i ti p .J+n J y. ' ' ~. T 3 ~ ~ II 11 T . I r~ .. C m -I 'Z' O ~ ° a N ' : °' O ° m m P' 6 6 ° ~ N ~ ~ ~ S. L ~ r y O ~ ~ - ~? c n 1 1 = o m P-- ~ m 3I J ~ O ZD w m a = o.Nan o ~ ~ N .3 ~ ~ ' -" -'C ~ ~ C ~ O d 3 32 33 w H w < ts ~ 'OO W ~y w C 3 J ~ m ~ ~ ~~ m~.0c 7 d i m A~ J v war oogC),'0 °os ~mooo f7 ~m~s~ ,~3~~mtn~ own 'x. m' ~mo~~ .d_., 03° fDJF~f ~ a-~oo ~ °_owc~v ~ ~ Oo F3 ~~°Q3 a°o o~~~o ~ m~~a3 ~30~r°n°-G o01°3. O~ c o m m w f/I O w .J.. O^ O O' w O O S~ c N. ID ^, d d ~ y (p 3~ =o ~^n£ m coO ~ow'°`m rn 3od3 ~m~ °aw ~ ' w w ~ 7 rn m o' »° F w m' m rn y~ N Z £~ n -in». mks a ~nK oc?° ~~dw oro ago ~w w ^~ ~ ~ m c m'o. ~ d ° '^ m n~ ~ ~' ~ ~ m N 3 m cJi 0 o J r: a fo o 'o m '< 2 3 0 ~' n~~ 0~~5 D3 nomN _~da cooww ~~~ ..O y ID C N ^~ x~ G I N J (p O..+ O y_ O a 0 d ~mfD o-o~' oa °O-o Dc °.co_.m T S moo < ry ^ O w > > t0 W ~ O. -w0 O to ~ 3 ~ -~ ~ N .N+ w 4 O W N O. d N 3~ 0 N J~ O. B O Z O N y 7 N N O O O~ O N'c w `G O~ `Z fD.N C~ O.O O O N £ m w r w~ ~. O~ O N N n '~O <~ N O N N N s c w 0 ~. O m e n= 3~ O c 0 9 N .~ d O- to C1 0 ~i =~ m A r p N J~ O co nm mm O. ,J... ocN ~OwO p N ~.~ c ndm DOQ wS... O 0~ 6 .O. N 0. O N "O m N p~ ~ f D S o am2~°c "3 ~~a~^3~m ~ =.c~.° ~ F`°m', mpz ~.am 3~ ~a3m-m°c d ~ am mc~~'i1pJ rn g4»m~`pNp ° w "O ~ . h J ~. ~ J J N 5. O 3~D Qm m n ti . O C j S N O r a n ry N~ ~ „N,~ W O N J V) O J 'O O 0 "~ -, a m~ S D~ '~ a 3 0 N~ a'a_m~n ~'° • m m~»w ~' cWQ.+o ~ `",Ny' z°-. yzy • we J T 2 N o 3 ~ F, »^N ca ~ n~N ~3 'p ~ nm r'D~ o ~ rn F 3~mf,~ o3im asa'm w ~ ~. ~'m m ~ ~ a°3om ~~m - J o.o - ~amN 'o. ~,~ N o ly3ooin Oa d°='~~=' Av »a ° g o ~~ ° m g o m~ ° d m .. a F~ S m y S w F ~^ EmfTm" my~~m~w w3d~~ ~ ~`°~°='.m >~O oho mw my~ om m~yp~°~ am~ad ?. ..om = ~'nm m of°m =6 mamomjc' w ym i°_omo tiO ^o-~ ~p m am mm c ~~ N s~~ 3 j N^ N `< N ~ N O~ s c a n < `G O ~~ ~ ~J O ° ~m m f s~ 'O J m.~ ~.c ~ m oa m - ,.. ~ p_ ~ ^ O N j Jmo Jnl. J d ~ ~ N n Qt ~ ^' °~' ~13om`~ ~ o N cQ ~ N N - N J ~ d N `G ~ O ~ N j ~ d ~, ~ ~ ~ ~ - S O N J? a O O O N -I , N ~N.. C ~O.S ... N N J W .y N ' nmmd~a,° W N -+ ~ OS ~ddD oSD 3" ~'c D 3~m J J ~ ^` pl N '00 O O N J fD - J (U O. O. O N O O J' N x~ n ~. N^ Q N N ~ fn N J~ (D O ^ O N N_ d j A ~ O ~ ~ J F' W ~ to ~ .0., ° Do F. o gJ ~ ~ ~ od ~ F'~ ~o-~ o f ~ o' ~J m J m J- -O ~ o. n ro 'OO c0 S N N N N ~ O~ p1 0 d IO O o~om m3 >>°~N~ ~~~ J o ~2mf Ja~~DC~' m om~ m= ~t1Jmo~c rno °'d~ °' mcF~:m 3 J c ~y°<o ~° nmm°,m~v, ~m 0 n 7 M vc,~ ~°~3s ~°mvo>>os am m mo 0.~~3Jnn~c~ O p d N~ O- O~ •~ d O C O~ N J- O~ O O S ~. O O n .G O ~ O O- N O J O F J t0 O W N N J N O S ^~ N ~~ N O N N Dl ~ ~ p N N ~ O] N .~ ,.J. d O. d ~ ^, m -~ J o m d N N (n y mN p'oy om~ad=~? ~~~ rooav° ~+ pl J f0 J .T " ~ mc~iv ar'aam3~~Do of c = ~ m ac ~ O a o amp £ ~m 4= o- o .o Jnmy~aro~~ m v, ~O._ nm m m ~ ~ ~ 3 m m ~ ~ N J O m aT~m~3~ ~,' v o3o n~ m ~ fC'- < 7 ~ ~ .N. N N '0z ~ o m n m d NS41 J fi ^ Q ~ (/~ N N 2 ~, O O N (p L ~ 6 m D 2SQ O ~ N ~ tDmm3 ~ `x" l 0 l ~3~~ 003 ~D3m~2~~" ~~fi~ iSf w nf.o 3m ~ s y s T o y~~ n v m m c n r = o 2 n ano,o m ~cc ~ c4o r`r "~' 5 3 w 0 3 3 a m m o ' . C7 w a 3 0 C 7 w (P A m N~ =` D m J- J--o D -o ~ dO .0.. N n N y'~~ ~,3 N~ o ^ o .. m m o o m ~ m O C 4p J~ O O J y 3 d 91 <~ t0 O ('JG O O d T j ~~ N J O N p1 0 J n C d C N 3 O ? ~ `G N J O O O y SU ~ N N ~ `G 411 S d N O S T~ N O v N ~. N~ mo~D 6-'.m ~01JJ o m4° E2.3 a°v yd^^, N N t~ N Z 3 y -O ^ cOi N O oa~'o-o mm~o "mCn 00 0°. ~ ~,o ~. C W ~ 'O m'3o`~~D ~v°~,mm moo O N YI Q 3 0 c J J r 0 >y O J N s 3 3 ~ c O O N ^ ~ d y J a J j O d d .mod.- d^,£3m J O N vi Vdi J S O N ~ J J N, ~ d ^ J a a m ~ N d ~, O 6^ N N~ ID 7 N O 3 K L N 3 O C 3 e~ O C 7 do°O~ m d o ~ °m N d N d fa c o d c ~ .+ n o y c ~~ J O N ~ -1 N ~ Y. 3d J'z3o3 ~ d c N j H~ C O C 3 ao p d Sa N d d~ d 0 N. d cJ. f~~on Hm =mod m'd B'~ Ja d C) O Ol ~ ~ ~ f O ~ .N. ~ 1 o ~ ~ N' ~ N N ~p d° caN ~~ O n 7 ° ~C O n ~ J o . .. ~ ~ ~ O C~ O N y ~ y f ? N O ^ x .. ~ ~ O . x N S N ~ j ~ 3 N ~ ~ N ~ ~ 3 v'm Q ao ad ° _ _ d o d~ O J ~ > C J N ~ O ~o omo°p- O O o d''F xy y N O , . ~ m~ =ccm o a ~ n m' N N d ~ ~ O. SO ~ 7I'.. d.d ~ ~ 1 ~ ~ .Zl O-~ .~ `° o. v 3i~ W 3 ° ° ~ _ ~ y ° ~ 3 N m W 2 ap °< 2 app ~ ~ Q'eH °1 '~ ~tttty' 7 do. ~, ° t~ p j O.~ O Ol O a O m ~ 30.J 30,Nj ° 'o 'O 0 y `. :4 ~ c ~ J C i N [ N ~ > O cmn c ~a C J Fm c ~'c d ~_ :.0 o ~ ~ ' , ~ '$~ m c> ~ .. ~' 3 o m ~~ c ~,n^~>>' a o m o o.fd 3 O' O N "' d d S • S C N d~ ~ d - 3 d N d ~'_ d m S . N n~ O T C ~ N S f] p d~ N d N O . . ~ '1 O d Na 6 ^ d ~ d SV p N O ~ . N N d d N 0 !, C n 0 O W ~ O O 0=1 N O N O. j ~ d O d J O 3 m J d o ~ .'+'i. fY . O fD O' N.N O~ - N ~• aO, NDm .~ ~. O>> ~ c Zrz~Dsf m N N "" o d R~ ^ O ~ r~ w d d O d N O m Yr..w f m .,;'y;, ~ N~ N N y S N d A 3 Q C 3 .. ~' x~ m y 5 3~ 3 m° 3 3 D a o o ado o d o o d d d O N d S C j C~~ C C S O d F O^ O, O ,J. tO ,J.. d O J d `G a0 m~.N._d S Na Ned e n d ..: m ~ o J"~? o Z $ d h A O. w 0 d 0 n^gy °. ~' m S.'. d J d d d N N ^ N N C O : m N 3 = ~ p N O n y w N N ._ G a~ p_ ` O dd~~o' No°O-m i 3v"ico~'o~o'o N o~ 2yo. co ~o °-'0 7 °c~oJ a ^ O Ca ON ~ O~n~.N.. ~.N.. p F - d ~^ m m n • W N ~~ c d O N tin ~~ N N N N 0 3 a~ N y y C O O ~ ~ O m ~ O ~ p d S ~ N 7• ~ N ` G ~• ~ ~ ~ ~ ~' N ~ _ _ ~ p j ~ ` " Q y~ s^ d N N N C O ~ y y+~ N y J ~ p J O y S- C O n 7 ~ .. ~ N N N J O fD . d 0~ - c ~^ N 7 a O . ~ ~ N ~ N ~ (n (D N? N O N C S O N ~~ O O O H N d m c m _ A= Q ~ O ~ C O Q f0 m N p m= n~~ N p~ ~ d~ ~ ~ ~ n F o F N~~ O v i ~~ m m ~ o o y a ~ y N p J `°~ ~ N m o p y N O~ --Nm ? •' R > N p j x~3 n~'~N 2 d n ~ j 3 d Q ~ ~ ~ N N 7 C C~ N~ fG O 0 0 ~• O f0 ~ O N ~ ~ m~ 0 O y fD ~ N t0 a p^ -i ~ O -i a m n m~ -^ a -i n~ N N N S N N ~~ n~ O F N ~ ~ O~ N~ ~~ N ~' A 0. ~ C a O N =~ n= gy m n ~ no `y'am ~ . `~ 3m d~ndm o ' N ~ m m' c ~ C O N ~' d 0 -N N d ddd d ~~ SON N nN ~ ~Jy J y~ ~ O id x= O d 0 rp ~ Old C O S ~ ~y mp °3 - N' ~~ `~ - O °i o nS N [ ~ C y O d d J. ~ ~ N ? ~ N O' C~ a ~~ ~ Si y a n N O ~ O ~ n O O O 3° O N O ~+ am d~ m m m mm fa y ~ ~~ A O ~ ~ n y F ~ ~ j~ N N _ N n ~~ O J A d ~ (O N 0 N a N n ~`G n i f N n m N ~^ YI ~_ 7 ~ ~ O) Ot A W N -' G) S am jyD ma~om~ ° ~-OO~m ~~ocn y'D ~o~°~~y m~omm m C f M O N C. w .J. ~. < C of m .°. < N .°...y.. Q'O C d O" O y C ?.. ~. <~ 3m ~a oaoom~ ~ m~~ mo m~~ 3~y~co~°-' o~o~~ o~ yo 3~g 'mom ~ oommo -o'N~~m omo~~OCm °-'~`~v'o t/~ O N ~ O N C ~ .O-. Q O' .C. N C_ ~ ~ N ~ ~ ~ 0 m N J J N 01 O. °. O' ] .' mC. 1~ O 1 S `< y C ~ O m N n O J m x N S N O O" _. "O C ~ w t0 t^ ry O< O ? C' m m~ `< N N E ~ m S m ~ m~~ m d ~~ < m ~ G y J ~< ~ _ (D O J J R C N m .C. ~ O ~ v O D n m m o- ~ O~ '6 ''. ~~ O C O ~ N m m J J ~ N `< ~ m~ m i m p to J O C_ m 'O A m° ~ my °n mm ~mo~O wd~~oms ydod~~ °n~m .~~. no ~j ~~ o _~~30- ~oo.ln3 m'~nJO° boo 'mm ~° m~~3m ~.~m~x cJ~„F ai n ymm~ mc~° 7 00 ~n '° °'°o^o ,2motif ~°OS?o• o>>~oc m~~o y J J m m 'm S~~~ ~ x~~ ° m m m 9 m J a n s J ~' 'm J a m " ~m~sd°'~o~m'o onooom= no ~om<nQS.asm~ 8~y~ a3<n~~m 30 m'm~.mJ.~ooi^?mm m° ~o mmmSyF o-m n ~ j ? p~ N m N ~< > > ~ ~ ~ ~ 91 _ m ? m m _ ?om.J '~3sF.~ o d~ m~ m °o J~ofo3~ommJ aF.cy ~.T.m~ ~,J ~mJ.°cm°a£o"m '~m~ °m~Jm~ Js 03"=~~a~s£. o o~ ~ 'o°~Om .o.m cm~~m m~ ~ ga >:odaoo o~ O m ~, p_ O O C p_ O r. ~ '~ ~ p~ J~ Q~ S O mcDmSmmco~m'm' nm3om~ m J O~ p Q j O ~ N O O O ry n S 0 O y~ N~ 'O S?~ S O m ~C J J J O~ Oj ~Sm O C fD ~'~ ~ O C~ d y~ ~ ~ O.m m O N m C ~~ annn~ m ~m ~ in m' m' o m m o K m o o m y~ n o-m ~' ~ `c °~ w Sm d ~~ mm~ N ~ O ?o °oon ~? ono~v~ nom, °~ os~ ~ ~m~ J ~ ~F Jcm m rn-~'3.~-oom mf.'om cmt0 ~.o mn~ £~m~~G m~ N.~,~ ~ ~mmm-Od "moo a~ ^' om aom mcmi m ~' mf° °:~,5 °iS~ °'JdJm oma =~ m ~ sad ~~ ~ m'm .~°o. ~smd~~o~°: '° n 0 = N~ m p~ .O m O O O fD p; O j J fn m n~ F. O N ~ mO'O N ~' NO dn~ m cna~ jm S.<O Oa...~<S`<N~O C O Q n~ a~ n 3 C S O t0 O~ N N O V -•n N pl 0 d~_> >' JmF y J °:~m' o°o J f nc. ..?coo-m m' n. _. n . m n ~c J O w J i m o, co o- m ~c ~ v m ~ -., mco 'moo ~ m' ~°mQ ^~v~,-OO~o'cDo n~ (~ ~ m m C N fO N cQ ~ m ~ N~ N N d t0 ~. m~ m O~ j = O m O O a~ C ~~ ~. O~ N p~~ m <~ 'O fD O O N O ^. n OS ~~ N g m ~JS o m m<y ~~ m.om 3~~2ow~mo.m~2'O°m O ~a~£N ~~'0 3m<°m~ ym~<0~32~~2~3F.mmo_ N gF~m~ dwm am~a~-coa~ i °c ~.o m~~ a 3 F J m 9' o~ ~. m 'v 3 J o o c o< m° ~~ m° D m m m S _-OO 3 ~_ o F' m= n c~ m 7 `° o~° fO °~ m° m s -- m n m omi ~~ ~ o o c ~ c° m umi n m m ~ m$ m~ o~ m o~ m m~ ~.~°° ~ o a0~m ~y'~vmyd~' ~ mF.axa ~-.,s ?co °myvm~y O(n .-.sf3c c?.gmon n ~_ Komi cDOOO vnJJN f ~ >•m ao N Dim o-m :o dco m F~ O 'n ~ ~~ x am a m m i 10QOJnJg Sm~ M m°'?cmc m~ .0 3~3~ omvc ~ d .m ? o ~ '0 3 J m ~o ~' ~_~ o _ J O j C O S m~ N O m ~~ O C y~ m t0 m ~' `G j n O' N `G N~ O m 0 Z y N .'S y m~ ~ O n~ '' C m n C ~ n C m C d ~ m~ ~ ~O~Zn~a,c~~~o .gym ~ m~ E3~ m=~p01.o g m-inLlov, 3 a J9ma a$~a 'mo~< ~Tm~o:om w r.> O ~~m ~~ W ~m~~Dm d.~n mcA~~ O c QO am o.~°c 'omm ~~?m y ~~c^m 7c ~~°i m'~' o~~ NO3mo ~ 3 m s-c m< ~< ? ~ 0 3 7 oa ~, ° m 3 c f7 ~ C 3~ 'O j 0' n n N d J. N m m (Q ^~ m~ _' N C~ m m n m N N ~ O. O n mom~°^~m aoc0im~xafo°c o. mmy .goo~>• c c >•a~~ m f o0'N <3 ~ci~~ m mooic~.. ,°<NO~y my,7 c '<m ~g~~o m~mnmv m>-m ~ 0.aoom mm~aN m3 c m'fD d~ n~ coo °°vmK Z3~3 mcmdm m~N ~m o m~ N, a T - mo- ~ o~mN ~J• n 3m1D J d O N Ol N O S J J N~ .c.. `G O N O N O Q J N c 0 o a m ai m ~~ m F ~ m° m m v ,~ N om' o ~ ~ 3 3. Jg aN mm -.0 3 e ~<mm °mc°' ~m 3N~ J J -mco'yN m fm°' ~»a p vo min ya°-:.v ao°i ~c°o ~'o'9.J°i omof ~..t°-.~ mdm om c m mrcn N dt0 N N N N N N~ N N t0 N ~<`G N N ~ m m ,J.. O N .J. N N `< cn a ~Z ~0 yw ~w~ nmc~ o~ of ~-°O-''a`D °'oa F m < m m m m 3 c m m ~.,. NN ^oc?i m~o° me ? ~m~o, oam ~~ ~mocm w ~~_o• m ~vm ?m ,zm-~m ~ m y m J' ~ N N N 0 0~~ j ~. t0 ~ C ~ ~ ~ j y ~ ~ ' N m ~~ ~ ~. f nm O'C ~p - - N 'O 91 N O V lO N a m t0 m j, O~ d d O N~~ 'OO ? "00 N f, y • N (D fD `G S (D 33°E°'3 v;Z~ 2ov~ ~>•am ~ mo~aa~ c-I ogg~ p1N~ oc°' 'mN - J°~ m>>N E°~~°dm Nm mom mm °mmNm a°m. N .N., N N ~~ N m 'O N N ~p fD Qm m~ ~ a~~ ~om~ n"~nmio~O ~dm3m°d oo °'m~OO- ° m omJOm .'U moo n-»... .O~aJ ~~ S.o a,-~-- J o~om omJ mcm~~0 acJi'z~0^s o3m°dm~m''mjOmF~-' "~ ~?c~ mv~ ~'O N y O m~ O- N d O. ~ (D ~ "O Q!O N .. ~' J d >' d~ N J N .Oi 3 d 0 0 fD (D N m ~ C N O n , N y' O T O. J N y t0 Q ~ N o^:amf, gQO d m~ ~m of o mS -om ° o oa ~°:.m mnN fm33 v~~,o3m ~'m~ia-NO ~`°c 'Z o ~v ofcmi.°.S ~;^m mJ~o m Jf o ~oai ~ mn °~0 ~2~ ~~m <'~ ?-OO o~ m m~ m m m ~~~ m J~° ° m y ~ m ~~ o N ~° N N~ m ~ O' a N N m y O m m O N~ 1 S (°p ~ N~ ~' O 'O p~ m N O' N~ O J~~ O N J d n C N m N E n C. d N N O N J N O m 0. -. N m o o~ m ~ F ~• m .mo. 3 a m f. m c 3 ^ a? m r. ° n m~ F N d 0~ ~' ~ J N 7 O. ~ O J J J N O O J t0 ~ O ~ O ~ O (D ~ N (D fD fD d m O. dK N fD J f0 fD ~< (D i/ N O O y N~ rZl Vl O (q ~ 3x~ ~' v0 . . . . . m>> ~° < ~r~ am ~' J ^~ O. N fl1 f/1 N~ d a y `mG a ~ N n ~ N O N 12 _O. O.J N, O. v°i dJ m- 0 Sn m'~O N~ X 0 0 O' C~ vj v^,m 3-03 N J .<Nm -~= mmtO ~ O~,2D mf Qmm ~'-m ~ y=m J a am m p0 c ~ o'er ~' o °-~y c m o ~'0 m m1 0 ~d m N p~ d d 2 O J ~ d N`J< O ~ },nd ao r r r r W ao o w ~ '~ n ~ C^ ~ „a , " E N N N N d n - ^ 6^ F <~Y,.I ,: p n O n o N N m ,~-! N N N N N N J S d N JO m a ° d ~ a ° d m J ° o N a s o o ~ S o ~. ~ ~ m a a. ~ s n N O d d J ~ f '~ ~ ° m m = N N Cl ° ~< O C _ 0 n ~ ". ~ d _J :'J in~t' ~j N S`p',A- I II ~ l n Qd ~~~o m a no,~d vcd d o-d n Q d no o•d .~,_ O Crr gp?r w r2 ~ O~C < 30rC r 2r r(pw m Srp= ~,:. ,~' D i d nn a J d m mmHd J O mN ' J d N~ ~ ^^_mm w w J ^. new J d O »3. ° y ~ J < °~ d° w 0 n . ~;:.:. p i (I n I l] J O N ~ N N y L J O Q N B J N N J N cc Q N d O ~ ~ 1~ _. N ;. :. W - ( ~ p 3 C n J J w 1^ J m, d a J C n J J d '^ J Po H. C~ w J w n o N m N£ J ry °^ -. J ~ a~ 3 C N S d s 3 . . rfl:. . O N " J ~c N O O K N O- w O O J j w 0 N' ~ ~ j °j 0 d w w J w 0 yy i) N» O F oc° O O oan f O d o~' a n ~'o `< n c J g u »< C < wJ 'C.' , :,~ , m_a T~ ~ v a m a '^ ' d~ B _ a m a»" d '° P-p g ~. s ~ J E n m N~ m m o m~ o a ~ W:r _ Qw(dp n o c- J d N , J p cw- ~ S N d , ~ S J J i ` "°;n ~°w d n `i 6 J lp N w^ . i i ~ . d 6 . -r y 8 G N + ~1 O~ y O d ,.. ~ N< O 0 ~ w N< 0 a ~ o < ~ w a N .. ~~ (] J F ~. O 1 ~ 4wi 9 J ~ N a ,0 ~ ~ N J C^ w < ^ C _ n p ~ 0 J ~ ~ ° S~ C ! 'O Z N n < N O ~< ~ ~ O ry Q ^ o ~ ~ ~< ~ d 0 d N j 6 ^ 0 tp ~ S d ~ m n N F F, E N T, f, n N F F N d w C z ~ N S C N C S 'OJ O 3 3 • J a. S'O N J 0 0 0 O » d ~ O °, D dN Sw wo ~ J ~ N j Z N j 0 C N ~ N J J o 3 0 Q3 ~ » ~n ~ ~ a~ a~ n ~ me m m N N ~< O }~ V_ O 3 ~Q ^^C i~(~ D 3 w 0~ D ~ D Z D s o c 3~ D S~ D f d3,a rn Dw ~n~ h 3w~m Hamm ~' ~,a°F D'o m0- f mgc f y°n S N S H w~ D O D 2 2 m ~~~ w m o N~o SN nJ ~s r>F m'mom3 J m'~m~ $N3m m o'n°~~n Oy 707pz ao~mc a and°w r-oma 3 m~oy TQ ADO n o-°a o .c<N~J 3~.0 N w~~ 3 ~ O;? c w~ 3 m m w o D n ~ m n 3 ~Jno- m~^ JJD2 »~'wm3 J 1f poi w~ .cN. nn~,o nF 7`mD Fm J» o ovQ q-aN (D ° =d ~ Z N F.N w fJ F j° o xo O< DO{ ~~T~p~ 0 3 `< m3o~ ~1 m w Q m w 2~ Z J1 m c w° w ~ ~ m° 3 D~ 9O m~D c ~g.om j=Z 2pm fm'c'm~ SaD ~~3D r Cf t0 3 y n o- W~ V 9 Z ~~ f N c ~~ v n~ c' m~ ~ y0 <yQ n a3~ ~v m? ~om~~ y D== cD-oF d W .~ 9 o N a ~ 3 v m .~ Q d o= o „w ~ f ~+ i O~O o' c.:n OF Z= ?maa ~ m.o 3, mwow v L9 a 7 ~~ D J o D m m o mw 3 nc m msJ y m N a >> ° mN mr <n ~ mJ m ~J °' 3win I~H A O ~ v o'<'» ~0 00 °-'3wo;2 c no m°.3 0 o x?~ ~ mom zw Oa aa'a-o° ~ "_~ N`°w n 7 0 100 p F m?n tmii~ Dm 3~3JN3 0 oow ova r C .1O a ~. ?~S m', ~m D~ 3°-' Jm mom ao-n W N x'00 ,o, m5, `~ ~a ~O ~S~m~ c ~m~ cm,»n ,y a n N inn D m O~ o~ ~ n o ~~3 mo = RW1 ~ 7 33~ DQ Cz c °w '< S»3 oww 'nO mn£~ v 00 0 o'm ~ m»A Son N ~ m ~ C_ mz J ~a ~oa J °-c T C m o m a w m° p ~ o c m° m g ro g y m day c~ mZ _ ~~~ `o~ m ~'~ Vio ti~ 3 N l a w z, '~ w T wow z ~ ~ ~ o-o ~ - J ~^ O w ~< 3 1 1 ~ WINCH & HOIST 4.50 t .03 inches 114.3 t 0.8 mm a z 0 r.` ea Of O .~ >a eo .~ 0 H L7 d W N C CD 7 N a eo 0 'o n cn a La MOUNTING Frame TEMPLATE 1 D, NC, DD & Ym MODELS -~ o o , ~~~ -o i i i ~ i ~ i i i i i , i i i , i , i ~ - ------------'11/_15 DRUM------------- - -~- -'- - i i , i ~ i , ~ ~ i , i ~ i , ~ , i ~ -01 / -13 DRUM i --------------02 DRUM µ O O W OD 3 ° ~ 3 ~ N g A It It p O W Op 3 3 " N r O A O O I} µ O O W ~ ~ "The Right Control for Your Application." 12095 NW 39 Street, Coral Sorinas. FL 33065-2516 This document is supplied with Model KBMG oniv. ~~ ~ Warning! Before installing the SIMG onto the KBMG, the AC power must be disconnected. The following Installation and Wiring instructions are to be usetl es asupplement to the KBMG Installation and Operating Instructions Manual (Part No. A40263). Refer to [he SIMG Installation and Operating Instructions Manual (Part No. A40269) for specific and external signal following connections. See Figures 1 - 5, on page 2. Tools required for installation: small flat blade screwdriver, long nose pliers, totters. Notes: f. To install the SIMG, be sure the Top Panel of the KBMG 2-Piece Finger-Safe Cover (FSC) is not installed. 2 All tdmpots and jumpers, on the KBMG, must be set be/ore installing the SIMG. Preparing the KBMG Prior to Installing the SIMG -See Figure 1. 1.1 Insert the flat blade screwdriver between the KBMG PC Board and Terminal Block TB7 and gently pry it off. Discard the Terminal Block. Note: When prying off the Terminal Block, care should be taken to not scratch circuit traces that are on the PC Board sudace. 1.2 Using a flat blade (or Phillips) screwdriver, remove the screw from the KBMG FSC. Retain this screw for use in Section 3.3, below. 1.3 Using long nose pliers, remove and discard the Terminal Boots that are factory installed on Terminals'F--' and 'F+' on the KBMG. 2 Preparing the SIMG for Installation onto the KBMG -See Figure 2. NOte: I/the SIMG does not contain a Ring Lug and Cable Tie, proceed to paragraph 3 below. 2.1 Using long nose pliers, carefully uncurt the Ring Lug off the Cable Assembly. 2.2 Using cutters, carefully remove the Cable Tie from the SIMG. 2.3 Discard the Ring Lug and Cable Tie. 3 Installing the SIMG onto the KBMG -See Figure 3. 3.1 Align and gently push the Terminal Block on the SIMG onto the Terminal Block Header on the KBMG. 3.2 Afign the (3) Holes on the SIMG with the (3) Snap Posts on the KBMG FSC. Genily press the SIMG Board onto the (3) Snap Posts. Apply pressure at each Snap Post. 3.3 Install the Screw, that was removed in Section 1.2, and gently tighten it to secure the SIMG onto the KBMG FSC. Do Pot overtighten. 4 Wiring the SIMG After Installed onto the KBMG -See Figures 4 and 5. Note: On older SIMG models, the Brown and Yellow Wires must be crisscrossed, as shown in Figure 3. On newer SIMG models, the Brown and Yellow Wires are not crisscrossed. 4.1 Carefully insert the Cable Assembly through fhe Retainer Clip on the KBMG FSC. 4.2 Connect the Brown Wire (larger terminal) to Terminal F- on the~KBMG. 4.3 Connect the Yellow Wire (smaller terminal) to Terminal F+on the KBMG. Installing the SIMG FingerSafe Cover -See Figure 3. Align the (4) Snap Tabs on the SIMG FSC with the (4) slots on the KBMG FSC. The Cable Shroud must be positioned over the Cable Assembly (Brown and Yellow Wires). Apply pressure to snap the cover into position. Note: Be sure that the Cable Assembly is centered in the Retaining Clip so the wires are not damaged by the Cable Shroud. The SIMG Installation is now complete. (A40138) -Rev. B00 - 9/1/2004 - 23031 B00 Page 1 of 2 PC tOM 12/07 "The Righf Control for Your Applieaflon." KB Electronics, Inc. 12090 NW 39 Street, Coral Springs, FL 33066-2516 Figure t -Preoadna the KBMG Prior q Insgllina the SING ~~- Beare Aker Saew removed Terminal Bock removed Remove Screw Renpve both II I Terminal BooLS I i Insert Screwdmer here to pry off Termi~l Block Figure 2 • Preparirg Kre SIMG for Insglfalion omo the KBMG Uncud Ring Lug here car~z z Tr(-) Cut Cabk: Tie here c°n~' Tz(+7 Figure 4 • ~dng the SIMG Aker Iraglgd oMo the KBMG Brown Wire (larger grminal) conrrecls M Tarminal'F--' on KBMG + ® ~ ~ CoN2 O T2t+~ velbw Wire (smallergrmkraal) mnrreas gTenMnai "F+"on KBMG Rade Cable Assembly through Reginer Clip Figure S • View of KBMG Tem li n al a "F•' and "F*" ~ ~ ~ " ~ ' Terminal'F--' Tertninal'F+' the SIMG onto the KBMG Note:On newer SIMG models, the brown and YeNwv wires are not LTlaSClOSSed. . ~ f. II II II II I I~ o 11 II II II I ~ j Snap Posfs II I I I ice. ~I ~i~i I I I I I I I 1 I ~~ Snap Tabs I (4 Plates) I erSaq Cover l~~l I I I SIMG PC Board I 1 I 1 I ::'~ I 1 I I I 1 1 I 1 I Anxss lkor 1 (Jungers JlAand J1B) I I 1 rt I ID I I I 1 ® ~`~ m ®~ V (A40138) Rev. B00 - 9/1/2004 - 23031 B00 Page 2 of 2 PC 10M 12/07 'The Righf Comrol for YourAppllcadon." 12095 NW 39 Street, Coral Springs, FL 330652516 _ Telephone: 954-346.4900; Fax: 9543453377 KB Electronics, Inc. www.KBelectronics.can New 2-Piece KBMG Finger-Safe Cover This KBMG model wntains a new 2-piece Finger-Safe Cover (FSC), as shown in Figure 1. tt allows the installer the ability to make all trimpot adjustments, complete the wiring, and set all jumpers wtthout its removal. The Top Panel is easily installed by first inserting the Prong of the Top Panel into the slot in the Base. Then press the Top Panel onto the Base by aligning the (3) Top Panel Holes with the (3) Base Snap Posls. See Figure 1. An Access Door has bean added to allow resetting the AC line input Jumpers JtA and J18. (Note: The drive has been factory set for 230 Von AC line input.) To remove the Access Door, apply pressure on the lower end of the door (at the "finger grip" under the 5 vertical ventilation slots) and slide the door off, as shown in Figure 2. Note: To access Jumpers J4 (15U/101q, J5 (fRQ/SPD), end JB (RTS/CTS) with the FSC installed, efther remove the Top Panel or cut out the Jumper Access Tabs (see Figure 1) of the Top Penel. 2 -Access Door Jumper Access Tabs Access Door (Factory Installed) 00000 00°0°°°0 Access Door (Jumpers J1A and J1B) ,l Prong ~ 1 r. I I . I I ~J Press here and sgde Access Door up Base Access Door Slide Removed ~ Access Door ~ Jumpers J1A and J1B (1151xig VAC Line InplrtVoltage Selection) PC 10M 05/08 - 7/6/2006 - z3o3ono2 page 1 of 1 Figure 1 • Model KBMG with 2-Piece FingerSafe Cover N O O N N N W O O ~ 'O ~_ ~ » ~ O O> O < p- ~ 'p p 'O m m _ C C m , W ~ W ~ ': A N ,A N =.p 2 2 2 2 ~ O ~ ~ 'O ~ N N N N T. d 3 d 3 d 3 d 3 CN ;: . v N o N v N v N - . m N W N W ~ ~ _ ' ~ ~ O < O « tJt (T < D N W N W -+ ~ j E O G O G tT G (T G W (T N ~1 ~ L N C O tT (IN O . 3. m D D ~ ~ ` a 0 0 0 o W ~ m p .. < G G G A ~ ~ ~ ~ v ~ ~ ~ v N v o o v ;U 1 ;U ~ A ~ ~ ~ ~ ~ ~ ~ ~ TD N Z Z VJ ~_ C ~_ C 3 v O N 7 CD N C 7 n v N ~~. O S ci LU C I~ r ,v_n ~n~ ~ ~v o~n °~r x-i.IMn~D waRRAtm For a perbd d 13 monu>s from daEeot adgfnal piKdrese, KBwXI rspak w replace widaut charge devises which our exwldrwfion proves b ba rfefedWa in material w wafar~odap. This wamamy h'YaEi d the unit hag tmtKK been tamperedwilh by wlauthorized persotte. mieuaed, abused,.M Nrg+ropedY irls6elie0 antl has been uaedin arxordance with the slstructioris aMlw'radrgs euppnsd. The foregdltg is b Iiedof any odwr warranty. or ' guaramee, e>gxesaetl w bridled, andwe are not ror any expelwe, irwtadadon and removal, irloolr7~denoe, a~ damage, kidildklg iMwY ro ally perswi, caUSed t>jr haifq d OUr m8nUf8dure w gala. Soma stales do r10t BdOta crltMin excHlebrlswfirrdtatbrrs foundatf~warrarltY trodret dray rliaY:~aPWYroYrW- h1+mY evem, KS's total liatiiGty, fielder alldfOUmEtenwB, shall cult exceed rite full purotage pibe dthle unlL (rev 4/BB)... KB ELECTRONICS, INC. ~ 12095 NW 39M Street, Coral Springs, FL 330fi5 • (954) 348-4900 • Fez (954) 346-3377 ~ Oasroe Floritla Call TOLL FREE (800) 221-6570 • E-mell - InioQkbelearonics.com www.kbelectronip.cam IMO2a31-Rer. a-12/ae PC 10M 02/08 TABLE OF CON TENTS Secaon P~ O R S ~ l P a i. Simplified Setup ant 1. AC Line Vanege J umpar Bailin ~0 Operating Inshuaions .......... .... 1 2. Motor Amabre ValMga ii. Salary Waming .. .. ..... ...... .... 3 Jumper Bening ............... .... 10 I. General Inicrmation ............ .... 4 3. Jumper J4 Setting ............. .... 71 II. Operation .................... .... 5 4. Junpar JS Bening .............. ... 11 III. Setting Selectable Jumpers ...... ....8 5. Jumper J65eaing .............. ... 12 IV. Mounlin9 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ........ ... 15 8. Speetl Control tootle ............ ... 13 V. Wiring ....................... ... 15 7. Toryue Control Mode ........... ... 14 VI. Fusing ...................... ... 24 8. AC Line Conneaion ............ ... 16 VII. Trirtpot Adjustments ........... ... 25 9. Armature Connecibn ~~~~~~~~~~~ 1H ~~~ VIII. Funabn lnGptw La mps ........ ... 30 10A. Full Voaage field .............. ... 17 I%. KBMG-2120 Ameasories ....... ... 30 108. Hatt Voltage Field .............. ... 17 %. Llmitetl Wanarrty ............... ...34 il. Main Speetl POtenibmeter TABLES Connections ..... ............. ... 19 1. Electrical Raiiigs ............... ... 5 12. Control Layout ................ ... 20 2. Summary aCOntrol Opemilon .... ...fi 13. Mechanical SpeUtiralions........ ... 21 3. General Pertwmence Spad(rations . 7,8 14. Vottape Following Connecaon .... ... 22 4. Jumper J2 Posikon vs 15. Regenerate to Stop ............. ... 23 Maw Horsepower .............. ... 9 16. Coast a stop ................. ... 23 5. Relationship of AC Line Input erb Maor 17. Tach~Generator Feedback ....... ... 21 Vatta9e with J1A, Jib end J3 ..... .. 10 18. Accel Trimpot Atlluslment ........ ... 28 6. Terminal &odc Wirirg IMOrmetbn .. .. 15 19. Dead Band irimpot Adjustment ... ... 27 1. Fleld Canneeticns .......... .... .. 18 B. Armature Fuse Chart ............ .. 25 2. MOTOR CURRENT. Jumper J2 is taaory set for 7.5 amp motors (7.5A). Fw borer amperage motors, place J2 In the proper positon. d motor amperage is less than 1.7 amps, use the t.7 artp positon ant readjust dw IR end CL Mrtpots according ro section VII, C and O on pages 28 and 29. Nora: The feawy settirp br Current Urtat is 150% d the rlaninal currerd aeffbg (e.g., n J2 is selected for 5 amps. the equal CL setting wia be 7.5 amps). Note: fi rite 10.0 amp Seainp (t0.0A) b required, an auxiliary heatsid< (KB PM 8861) moat be used. 3. TRIMPOT SETTINGS. All Idmpots have been factory set in acmMarlce with figure 12, p. 20. 4. ENABLE. A Jumper must be connected between "EN' and 'COM" terminaN w control wIX not operate. (See sec. V, G, page 22.) Note: Fw the locadan d Jumpers erg rompots, see fig. 12, control layout, on page 20. 5. SPEED OR TORQUE MODE. Jumper J5 is (easy set for speed control operation (BPD). Fw rorque coned, set JS ro me TRO" position, INSTALLATION AND OPERATING INSTRUCTIONS REGENERATIVE DRIVE MODEL KBMG-212D KB Part No. 8831 Variable Speed SCR Control Designed for Shunt Wound and PM DC Motors FULL WAVE • 4 QUADRANT 0 LL //~~ 9ee7 Waming ~ T L :., or1 Pa The information contained in this manual Is intendetl to be accurate. However, the manufacturer retains ate right to make charges in s UL U4 design which may na ~ indudetl herein. PSNTA ~ POWBR ~ E A COMPLETE LINE OF MOTOR DRIVES ®1999 KB Electronics, Inc ~~/ Q KBMG-212D SIMPLIFIED OPERATING INSTRUCTIONS BIPORTANT-You must riled these simplified operedrg IrletruCibns before you proceed. These klatructlons are ro ba used ae a reference ony and are not imerded ro replace dre deteledireWCtbns provdeu trerdn. You mustreatl Me 3atey Wamirg beforeprxeedirg. 1. CONNECTIONS. A. AC Llne-Wire AC line voltage to terminals L1 and L2. Be sure jumpers J1A and J1 B are troth set ro the sorr@ct input line voltage 115 or 230 VAC. Connect prourd wire (eats) to green grouts screw. B. Motor. 1. Permanent Magnet (PM Type). Connect motor armature leads to M7 (+) and M2 (-). Be sure jumper J3 is set is the proper position "A90" for 90 volt DC motors erd "A180"for 180 volt DC motors. Note: 180 volt DC motors must be used with 230 VAC line, 90 volt motors can be used wim a 230 VAC or 115 VAC line. Nots: Motor paltormence and effidency, Including brush Ida, can be atlvaraNy sNecMd when uefng 90 von motor wnh a 230 VAC Ilrre. Confect motor msnufacturer for deredng Infermatbrl. 2. Shunt Wound Motors. Connect motor armaure leads as above. Cornea full voltage shunt field leads (90 volt motors with 100 voh fields antl 180 volt with 200 volt fields) to F+ and F-. Cornea half voltage fieltl leads (90 vsk motors with 50 volt fields and 180 vatt motors with 100 volt fields) to F+ and L7. ~® II. SAFETY WARNING!-PLEASE pEADCAREFULLY' This prodiwt shallb be htslalled and servbed by a quadfbd klavliaan, ebadcian w etearbal meinleriance Person familiar vrdfl ds operator and die hazards Involved. Proper irwtadatlon, which k1alldBg wkkg, n1Ma1Mg N proper erlaosure, fusing w odter werament protectbn ant grouridvlg, can reduce rile chance d elechb stacks, fires or ezplosbn In this produa or prarliats used wilt this protlua, suet as electrb motors, swiaalas, coils, eobnddawrelaye. Eyepro[egbnmust he wom and Insulated a~uemlem tools must be used when warWlq with control under power. This product b wnstmcted d materials (plastics, t1te181s, tarpon, sfiiWr4 ero.) which may be a pdelltlel hazarii. Proper Shieltdnp, grounding ant INterilg of tlds product can reduce tl1e erra0eion of recta frequeraY (rMetfer&1ce (RFq wMch may adversely agent aerreitlve electrordc equipnwm. d tnformedon b refpXred an tlds prodigd, cantors our factory. h b the responelWdy d dw equipment manufacrorerand kdivfdual irisfaderto supply this satetywamiltg ro the uitidate user of this prddud, (SW eltecdVe 11/82) Thfe coMrd wntains eleptrbnic StarNStopand enable dreuitstM1afcan be used ro start and stop Me databl. fbwevw, these dreoirs ere never ro be used as safety dl6Wrtrleda gage dlelrare not fad9afe. Use oily tlw AC fide for this purpose. Tha kawt cnt%,de of rids omtrd (pdenfionwter, atarValop, made) are not iaclated from AC fine. N sure to folbw an Msdumtom nretuly. Flre andror elaehocutlon eah resuN due to ImproperLae of thla product. 2 This product complies with ell CE directives peHlnent at the time of C manufacture. Contact factory for tletalled Inatalletion Instructions end 3aclantlon of Conformity. InetallMlon of a CE approved RFl Illtar (KBRF-200A, KB sIN 9945C or equlwlent) la required. Additional shieltletl motor ubb and/or AC Ina cables may be required along whh a signal Iwletor (model SIMG, KS PM 8832 rr equlvalant). GENERAL INFORMATION. The KBMG-212D Is a full-wave regenerative control, capable of operating a DC motor (Permanent Magnet or Shunt) in a bitliredional mode. II provides 4-quadrant operation which allows forwad end reveres torque in both speed directions. The tlriva oflere excellent controllability, which closely approzimetes the pedormance of serve-type drives. Ratings and spedficetions ere presented in tables 1 and 3. Be sure the ddve Is used within these ralinps and specifications. (Nola: Regenarotlve drives normally produce more motor hasting then etanderd unltllrsctlonel SCR speed conhols, Npsclelly under low speed operation. Thla shaultl be taken Into consideration when specllying motor rating.) I_ ' WARNINOI Be sure to follow all Instructions carefully. Fire or T ~ electracullon can rcsuh due to Improper use of this product. Read Safety Wsrning. To underetand fl1e CorKxBpt of a regenerative drive, the operetbn of an elevator can be used. None were to enter Me elevator on the first flow all press 10, the motor and control wood have ro lifl the elevator against grevfly. In Mis mode, the drive would operate like a conventional speed control which is called "rlgtodng' (the applied krad d opposite [o the diecton d motor rota(ion). When the elewlw B et floor 10 and floor t ks pressed, grevily will try to pull the elevator car down faster than Me speed for whidl fl is set The contrd will Men provide reverse torque to keep Me car from falNrg faster than the set speed. This aperetion is regeneration (the applied sad is in the same diredbn as Me direction of motor rotation). The table bebw summarizes the different rrlodes of aperetlon TABLE2-SUMMARY OF CONTROL OPERATION O1Merant TVaa o/Operallorl Mater ROtetlan OIreCUon gofor Targm Okau11o11 ApplMd lase DIreGl0rr 1 Motmkg Cw CW CCW II Repenxalbn CCW CW CCVI III MotorNq CCw CCW Cw IV fieganareden CW CCW CW TABLE 1-ELECTRICAL RATINGS AC LIrM ~« RaOM VAlhoal AUZNIary Fxalelnk' 1ade1 Na xe Voltage vwtp. MI%. Ac tyx. oC 14xlmum ' Ihn NO. .ry jVOC) lmdCummt- :tall CureM~. :Ngnepon+r.., - ~ aOIQO Ne (11M9 AmP+r fAVp. Amps) ~ t1P, (l(V/) KBMG 2/2D 8631 115 0-x90 12.0 8.0 0.75,(0.5) - 230 0-t 180 12.0 8.0 1.5. (1.0) . AC WN WUrq Wah Mixn4ry itaatslrrk (KB Pd19BM). MoWINO. Ke Vaape abfor V ~ Nsx. AC Max.DC ,'. kYxlmwa Meta. NAC)z fax CI- IVD I.aad Cwront '/.wtl Crwrara NOrepmrer. a0.90I1x (Bala Amps? '(AV4 Ampp HP, (ICW) '. KBMG-212D 8831 118 0-x90 16.0 11.0 1,(0.75) 230 0-s iB0 16.0 17.0 2,(1.5) OPERATION. The KBMG-212D will vary motor speed or torque as a function of the signal voltage on input terminals "SIG' (signal) and "Coto" (common). The input voltage can be derwetl from the wiper of the main speed potenfiometer or from an Isolated analog Input (signal voaage following mode). Since the KBMG-212D is a 4-quadrant regenerative drive, the motor speed will follow both a poskive and negative sgnal voltage and drive the motor in both the forward direction and reverse direction. In addition, tt will apply both forward and reverse torque in order to stabilize motor speed. TABLE 9-GENERAL PERFORMANCE SPEGFICATIONS PararlraNr BpaWlketlorl ~Y ~fl AC lJne kipld Vdlaps (VAC z10%SORO Nxl 115 a 230 230 AC l1M FraplNmy (Nx) 50'80 - Annstus Vaage Range 115VAC line (VDC) 0-x W - bmaWreVOlupellarpaz3ovACIJne (YOGI 0-200,0-: teo 0-t 1Bo FNM Voasps at llsVAC lIro IVDCI 100F,i0 - f9ald Voesge at 230VAC LYIS (YOGI ~ 200n00 - MuLaatlCapady(%br2MNWS) 150 - AmdnaTampwmrsOpsrakpRrps('C) 0-60 - 3pead Rarpe (Redo) 60:1 - AmNMFeedfads lnW Ragulmbn l%Baaa Spell) z1 - TachgsnermorfsedrrklaWRapWWi(%8at Speaa) zt - AC LM Rsplsibn (%Bm Speed) xOS - Currorll Rarlgea (tope DC) 1.7, 2.5, 5.0, 75,10' 75 FonvmA AOON (FACCI entl RevaraaAaM IRACCI Renga(Sac.) 0.1-15 1 Dace Ball Rar9e (%Baae SPaadl 0-t5 1 Max Spssc Trkrpd Bangs (%Bw OpesR 55-110 100 IR Comp Rerlge Y 115VAC llro (VOC O Fat lead) 0-20 5 IR Comp Rang M 230VAC lAN (VOC 0 FW load) 0-40 10 C0rldrwod Mxlpage TABLE 3 -GENERAL PERFORMANCE SPEGFlCATIONS (Continued) _~__...____-. t»D FwwW CL (FCL) ell Reverse CL (RCL) Rerpe (%Ren{p 0-175 150 aeakgl 0-210,0-z15 0-z15 Vdtege FaMawlna kWn Range (YDri)" z0.5 Vasage Fo4swirp Liraadry (%Base 9peW) - RpWrae AuxNlary Naabink KB PM 9881. - Requires Isolated kpN or equal ladator. 11. SETTING SELECTABLE JUMPERS. The KBMG-212D has waMrner aelegaHe )unpara wnidl moat be set balora q1e cpMrol can be used (refer to fig. 1, p. 10). BWd Irdicatas ladory seMrlg. See fp. 12, p. 20 for location of jumpere. A. J1A, J18 -Input AC LIRS Voltage -Salad proper Irpld fire wtt~e, 115VAC w 230VAC, by pladrg both J1A and J18 M the coned correapgrding poeitlon, "115' w "2.90." (See fig. 1. p. 10J B. J2-Armeturo CurroM-Baled tla J2 position (1.7, 2.5, 5.0, 7.5,10) closest to the rated motor current. (Note: The maximum output rwnent rs set to 150% of the J2 po9lUon, which maybe readjusted using Ole FWD CL all REV CL tdmpots.) TABLE a-JUMPER J2 POSITION va MOTOR HORSEPOWER rna o 0 ran ea o 0 ear, p o ,.re o 0 Jumper J2 Pwitlan Motor Ctarse YoartlwssPOwsr HP, (KVO (DC Amps) ~~ 180VDC t0.0A• 1.0,(0.75) 2.0.(1.5) 7.5A 3/1,(0.5) th, (1.0) S.OA 12, (0.37) i.0, (0.75) 2.SA 1/4,(0.10) 1/2,(0.37) 1.7A 1/8, (0.12) 1/J, (0.25) 10.OA aening requkes auxiliary heahink KB PM 9961 C. J3-Motor Armeturo Votage- Soled the desired armature voltage by pladng J4 in the proper position, "A90• or'A/80." .Note: Fa 115 voN AC IkM input, J3 must be aef to "A90." For 230 klpuL Me armature vattage is rrormalty set for "A180.' However, N is also possible to set the armemre wkage to 'A90" for steptkwn aperatbn. (Sea fig. 2 and table 5 on page 10.) J3-Tech-Oenarator Feemack (tor use wNh 1800 RPM motors.)-Jumper J3 is also used'rf tech-geneMMr leedback is to be used. (See fig. 2, p. 10) If a 7 wit per 1000 RPM tack-generator is used, set jumper J4 in the'T7" position. Fora 50 volt per 1000 RPM tech-generate, set the jumper In Me T50' posNbn. Note: When using Wch-generaror fee~adc, 818IR Comp trimpot afwub be Nmeo to a minimum setting (full CCW). FIG. 1 -AC LINE VOLTAGE JUMPER SETTING (J1A, J18) 115VAC 230VAC J14 J1R 1 ~ I~ ~ J1B JIB ~ ~~ 1~ t FIG.2-MOTOR ARMATURE VOLTAGE JUMPER SETTING (J3) 90VOC /80VDC T50 T50 J3 p J3 ° P 1B0 A1e0 Asp ° A90 TABLE 5- RELATtONSNIP of AC LINE INPUT AND MOTOR VOLTAGE with JIA, J18 arM J3 JUMPER POSITION AC LINE INPUT VOLTAGE J10. J1B PO91TIOt1 J3 POSIIWN MOTOR VOLTAGE 115 115 90 80 230 230 f80 1B0 230 230 90' 90' 'A 90VDC motor can be usetl vath a 230VAC line (J3 set in -A90' position). However, sl9eed mrge may be redurs0 and mote deratirg may be required. 10 H the motor argue is greater dean rite bad torque, tl1e motor will rotate. If m bad Is applied a Me motor, the moor will rotate at a speed proportional to ae iwque sedirg as set by dxl main potentiometer (see fig. 7, p. t4). ey using the ACCEL and DECEL amprn, the application of torque can be made more gradual or less gradual as required by the appliealbn. A maximum toque can be estadishlW using d1e mmem selector jumper, J2, whbh can he fuller modified by using d1e FWD and REV CL tnmpots. F. J8-Coast to Stop (CTS), FlG.5-JUMPER JB SETTING Regenerate to Stop (RTS) - This furxtion operates in conjunction with the Enable Grind, whbh b used to start all stop the control electronically. If the dreuit connecting terminels'EN' and Coota>aop Rrgnlrr+baBap JB ~ JB RTS RT9 'Coll' on terminal bbclc T81 are opened, ae control wBl cause d1e motor a slop. When jumper J6 b in the factory posdbn (RTS), d1e moan will regenerate to a stop. Ir J6 is changed to the mast to stop (CTS) position, the moor win coast to a stop when dte'EN' -'l~M" drmd b opened. Note: Control will riot run unbse a jumper or cbaed contact is connected between the "EN"and "Coll" terminNa. FlG. 7-TOROUE CONTROL MODE (Linear) ao W eo n eo so Bt a 90 w ro La1s 0 o to zo 9o w m eo >b eo b 1m APPlJED row (roaouel M1I 0. J4-Analog Input Voltage- FlG.3-JUMPER J4 SETTING Jumper J4 is set to the "15V" position for potentiometer operation. If the control is to be opereletl Irom an 7soletsd 0-±10VDC signal (see sec. V, F, p. 22.), set J4 to the °10V" position. Pobndometer Operalon BIpMI Folbwing tov tov 0 Nall ~ b, IS/ Pao+e° t5V N901 wlw weom 0 15V E. J5-Control Mode (Speed or Torque). - i. Speed (SPD)MOde-(Note: FIG.4-JUMPER JS SETTING Factory setting of JS is Speed mode.) In the speed control mode (JS set to SPD), the KBMG-212D will provide variable speed ntrol The moor speed Spew Nab Torgw Moos J5 ~~ o J5 ~~ e TRO 7~ will be in direct proportion to Ue input signal. Both forwartl all reverse torque are used to stabilize motor speed. (See fig. 6, p. 13.) ii. 7oryue (TRO) Mode- In the toque mnhol mode (JS set to TRO), the KBMG-212D will vary Uw mazimum motor torque as a function of the voltage input to terminals "SIG' (signal) aM'C.OM' (common). This vodage can be derived from the wiper of the main potentiometer or from an !sO/elect analog input (signal voNa9e following). 11 fao w w q~>R ~ YQp56 a 2 p ao 2t fo 0 0 10 PO >b b 60 60 )b e0 NI 100 110 1II0 190 NO 160 APIMIED Idwtrea011E11%) L a' BEIPOIrJr 13 IV. MOUNTING. Mount the K&M3-212D on a Bat satiate a an ahrasphere pee of mdsWre, metal chips, and mrrosbn. See Mechanical Spedficatbns, Bg. 13, p. 21. A 5K ohm rertgte speed potembmeter k provlde0 wia each conhd. Ins1811 potenlbmmer using Hardware provided. Re sure a inslad irlsulatlng d~ak between potentlmlmer and dtslde d hoot panel. Ertcbaure- When rratmtlrg the KBMG-212D in an encbaure, tt nxlst be large enough aalbwtheproperheatrBssipatbn. AtYz1YzlYendosUrebwltadewtlen1118m11hd is not mounted on an auxiliary heatsink. A 12'z12'z24' encbsure b appropriate at lull rating (11.0 amps) when dre mmrol •s mounted on an auzBiary healstnk KS PM 8861. V. WIRING. ~® Wamingl Read Safety Wamhlg before aaerriptingause tills mrrtrd. Wsmingl To avoid erratk oparalbn do not Mantle AC Ilne end moor wires wNh potenllometer, voNags lolbvdrlg, anebb,-InhlbN or oR1er algnsl wlAng. Use ehbWed Gabbs on all signal wlHng over 12" (~ an)-Do not ground shield. TABLE 6-TERMINAL BLOCK WIRING INFORMATION TsrmirlN Bbdr Corlrrectlotl SaPP1Y VBro Gauge Msxsnum OaaigrNtlon Oaggna8aa Ylnimum Mazimum Ttg~re Torgw(IMW) TBl Lopk Coneetlore 22 14 3.5 15 ' FIG.6-SPEED CONTROL MODE Wire corttrol in axordance wah National Eleddcal FlG. B-AC UNE CONNECTI Code requirements and other local codes that apply. A'rlormal 6b" 20 amp lose or dreuit Masker O 7 should be used on each AC line corldudar that is not nc ,,,,,,, at ground potenfiai (do not fuse neutral or grounded uNE cendudors). (See section VI, p. 24 for fuse informatioa) Wire cemrol in accoMance with """ connection diagrams (see figures S, 9, 10A, tOB, N and id on pages 16,17, 19 and 22). A separate AC line switch '( or contactor must f>a wired as a disconned swttch so that e,~ contacts open each ungrounded ceMuCtor d gle conaol. See I"'i table 6 tar terminal Wodc wiring Information. A. AC Line -Connect AC Lirre to F10.9-ARMATURE CONNECTION terminals Lt arKi L2. (Se Sure )umpers J1A and JiS are set to match the AC line voltage used.) (See table 5, p. 10.) v. ve B. Ground - ee sure to Around (earth) control vie green screw bcated on tea. A ® Oo not grourM any other terminals. Yerenee C. Motor Armature -Conned motor armature to terminals M7 (+) and M2 (-). (Be sure )umper J3 is set to match motor voltage.) (See table 5, p. 10.) D. Field- For Shull Wound motors only. Do not use F+ all F- lemlinals for arty other motor type. Conned motor shuts field ro tenrlinals F+ end F- far 90VOC motors wflh t00VOC fields and 180VDC motors with 200VDC fields. For motors wMl haft voltage fields, 80VDC motors with 50VDC fields and 160VDC motors with t00VDC fields, conned field to terminals F+ and L7. See table 7, p. 19 for summary , of field wnnecfions. FlG. 11-MAIN SPEED POTENTIOMETER CONNECTIONS 17 TABLE 7-FIELD CONNECTIONS (Shunt Wound Motors Only) AC Lhw Voltage ~« V FlNd VoMape FWd Canwcltan 115 90 100 F+,F- 115 90 50 _ F+, L1 230 190 200 F+,F- 230 180 100 Fa, Lt 230 80' 700 F+, L1 iteD Down opare5on (sea sec. III C, p. 9). A) Forwaro T91 +r,per SK E Main Speed Potentlometer-The main speed paenliomater can be cennelxed b several ways usirp temsnals 'Coll; '+15,' SIG' and "-15.' ASK ohm potenibmeter d supplied wtth control. (A 10K potentbmeter can also be used) (Wamingl Terminals "Coll," "+15;' "SIG" end "-15"are not isolated Nom AC Ilne.) Note: Jumper J4 must be In the "15V" position. I. Unidirectional operetlon only -Conned potentbmeter to terminals "Coll," °+15," "SIG" for folwaN drection. 70 operate In reverse direction, connect to 'Coll," 51G; and "-15.' Sea fig. 11, p. 19. ' Ii. Bldlrectional operatbn only-Connect to terminals "Coll,"'+15," 51G; and "-15' when using reverelrlp cen[ads. To operate wlih a porentiarwter, connect to °+IS; 'SIG," arKf "-151 See fig. i L FIG. f2-CONTROL LAYOUT (Illustrates Factory Setting of Jumpers and Approximate Trinlpot Settings) EN Q Cdl O iMll O NSV O SIG O IS FlG. 10A-FULL VOLTAGE FELD B) Reverse EH O COY ~ ipW O "19V O SO -ISV T91 A~ $K D) Bldhocdonal whh Speed Pot EN O COM O TpEM O atSV O SIG O -ISV O TS1 Jmorr' ~,1 swl ~penbatap SK Foe REV 'Note: A jumper mull ba WraD to EN si COM In order far cenlrol le ellereb. 79 FIG. 1S-MECHANICAL SPECIFlCATK)N9 (INCHES / [mm]) }615 OJfn - - [91.08] I r(6.]5] ~I: ~ '~ 0 U~~ ^ Ilm>ti o O O Notch Demotes O~t~ position. !~ C!1= "~ 3.e~ p ®~ n ~ ~ Y [t Of9~23] ~ •-E: •' O [96.52]' O ° TRIMPOT - EO o ~ ~ p m O TI ...,, ® ® ® ~ [sysDn_ C) Bidireelional whh Revareln9 Comad TS1 •.m.r• SK FwD STOP• REV Ex COY Tell NSV 4G O -4v O CAl1TION -Shunt-Wound motors may be damaged due to overheaihlg B flNd remelns powered wNhout motor rotating for an eKterMed period of Nme. Fl[i. tmn-MA1 FVfll TA[iF FlFt n F. Voltage Fdlowing - An laolarotl FIG. 14-VOLTAGE analog voltage can be used in Ilea of mein speed pofentbmeter. Connect signal to terminals "SIG" entl "COM." Nde: Terminal "COM" is canmon. A posithre signal ro terminal 'SIG" will produce a positive output to mdor. A negative signal ro terminal "SIG' will protluce a negative output. A 0 to :10VDC is requlretl to operate wntrol from 0 t full outpd. Nde: EN Cpl TAdr +IaV $IG ISV Jumper J4 must be in the °10V" positon. Note: An Isolated slgrrel vdtaga must be used or eafastrophro failure can result (A bipdar signal Isolator, model SIMG [KB PM ee32J, b available as en option from yourdistributor,) G. Enable StartBtop Circuga -The KBMG-2120 wntains a 2-wire stop drcuft (Enable), whk:h is used to electronically bring the motor ro a °stop " An /eoletetl single wn[act dosure is required. If en isolated wntact is wt available, k may be necessary to use an isolation relay. •Nde: N 2-wire starThrop dreuK Is not wed, a Jumper must be wkdl to EN entl COM or control will rid operate. L7L ~ WARINNGI Do not ws StarUStap or ErWtb funeUOns es a ufdy S~d7 disconnect. Una ony an AC Ilna disconnect for ttpt puryoae. N. Tech-generator Feedback -The KBMG- 212D is factory set for armature feedback, which provides good load regulation for mast applications. For superior load regulation, analog tack-generetor feedback can be used. Wire the lath-generetor so that the polarity of thelath-generator is the same with rasped to [he input signal polarity (see fig. 77). Note: If tech-gene2tor is wired with reverse polarity, Me motor will ron at full speed. Note: Jumper FIG. 17 - TACH-GENERATOR FEEDBACK 000000 re~®®®®®® -G. oc ]ace-cENEanroa J3 must be set to the proper position br lath feedback. See sec III, C, p. 9 and fg. 2 on page 10. Note: Chedr tech voltage p~ryolL[arity wdh respect to inpd signal it polarity does not match reverse tech leads. y7 Q Be sure AC line is disconnected when rewiring tactrgeneretor. FUSING. Armature Fuse - It is rewmmentletl that the wrrl!ct size armature fuse be installed, tlepentling on the rating of [he motor end form factor (RMS/AVG current). Fuse type should he Littelfuse 326 ceramic or Buss ABC, or equivalent. A fuse chart Is presented below which suggests appropriate armature fuse ratings. However, the specific application may require larger fuse ratings based on ambient temperature, CL se[ point and duty cycle of operation (see table 6, p. 25). Fuses may be purchased from your dishibutor. Wire fuse in series with armature lead. 1. Regan to a stop using terminals EN and COM on terminal black T61- Whe a wnlad is opened bewreen terminals "EN" and'COM," with jumper J6 in ih °RTS' position, the motor will regeneratively brake to a rapid stop. Appllcatlo~ note (See fig. 15): If controlled regen ro stop Is required, a contact can b installed in series with the signal "SIG" connection. The braking time will be equ. to the REV ACCEL setting when the motor is in the forward directbn, entl equ. to file FWD ACCEL setting when the moron is in the reverse direction. Note: J must be in ttre't5V' position (See fig. I1 D, p. 19.) ii. Coast to a stop using terminals "EN"and "COM" on terminal block TBt - wast to stop operation b required, move jumpac J6_to the west ro stop (CTS position. When the wmact Ls opened between "EN' arW'COM; Me motor wi west to a stop. See fg. 16. FlG.15-REGENERATE TO STOP 00 ®® "„~ eN,e,e ararosraaarvn;roarar FIG.16- COAST TO STOP OO O " cn ®® ars, ease ora~romrarroeror •FWD Accel arM REV Accel do rat abed the stopping time when the enable dnwi[ is opened. TABLE B-ARMATURE FUSE CHART Motor Horsepower Approx. DG Mo or -Fuse Rafing 90VOC iBOVDC . t CurrentAmps (AC Amps) 1B 1/4 1.3 2 1/6 1/3 1.7 2`f: 1/4 1/2 2.5 4 1/3 3/4 3.3 5 1/2 1 5.0 8 3/4 1'k 7.5 12 i 2 10.0 20 VII. TRIMPOT ADJUSTMENTS. The KBMG-2120 wntains trimpots that have been factory adjusted for most applications. See spedtications for factory settings. (Note: Fig. 12, p. 20, presents the various irimpots with their bca[ion. They are shown In the approximate factory position.) Some applications may require readjustment of irimpots in order to tailor control to exact requirements. Readjust Irimpots as follows: 25 A. Forward Acceleration (FWD ACCEL) and Reverse Acceleration (REV ACCEL)-The FWD ACCEL trimpot determines the amount of time tt takes the wntrol voltage to reach full outpd in the forward direction. It also determines the amount of time k takes for the control voltage, in the reverse direction, to reach zero output. (FWD ACCEL is the Reverse Decel.) The REV ACCEL trimpot flG. 16 -ACCEL TftIMPOT ADJUSTMENT lro ]3 1+1 ( sreem ~~ '~ I.a J r~j ~,ao o, u3 secows o rn. -fro determines the amount of time it takes the wntrol vokage ro reach full output in the reverse direction and the fima it takes for ttte wntrol voltage, in die forward direction, ro reach zero output (REV ACCEL is the Forward Decal.) The FWD and REV ACCEL irimppis are factory adjusted b approzimatdy 1 sewM. The acceleration times are atljustable over a range d 0.1 ro 15 sewnds. See fig. 16 for graphical representation of ACCEL. Note: The FWD and REV CL trimpots may override the rapid awel entl decal servings. Note:A4-quadrant FlG. 19-DEAD BAND' ACCEUDECEL acceswry ,ro module (KB PM 6834) is ~ available as an option. tt svem provides separate wntrol of FORWARD acceleration entl deceleration and REVERSE acceleration and deceleration la B. Dead Band Trimpat (DB) - e The DB trinlwt sets the amount of main speed ' po[entiomeror rotation or mow. xooeaw» Rl~w,x. oewoawo analog voltage input required .,ro to initiate wntrol voltage output. It a factory adjusted ro epprozimatety 25% of rotation. The OB Mmpo[ also tletermines the amount of flay that will ocwr halo regeneration starts. Regeneration oawrs when the applied bad rorque is in d same dkedan as the moron rotation. To readjust the DR [o factory setting: i. Set Main Speetl pot ro zero speed position. ii. Set DB inrtpol to full CCW position. iii. Atljust DB trimpot CW until motor hum is eliminated. (See fig. 19, p. 27 for graphic illustration of the DB trimpot.) Note: If the dead band trimpot is set too low (CCW direction), ilia motor may oscillate between forward antl reverse. Adjust tlead bantl trimpot CW until the instability tlisappears. (Oscillation may also occur due to RESP and IR COMP trimpot settings. See sec. VII. D & F on page 29.) C. Forward Current Limit (FWD CL) end Reverse Current Limit (REV Cy Trimpots -These trimpots are usetl to seI ilia maximum amount of DC current that the motor can tlraw in both the forward and reverse directions. The amount of DC current determines the amount of maximum motor torque. They are factory seI at 150 % of the current established by the jumper J3 setting. Readjust the CL trimpot as follows. i. Turn CL trimpot to MIN (CCW) position. Be sure jumper J3 is in the proper position approximately equal to the motor DC ampere rating. ii. Wire in a DC ammeter in series with armature lead. Lock shaft of motor. iii. Apply power. Rotate CL trimpot quickly until desired CL setting is reachetl (factory setting is 1.5limes rated motor current). Be sure control is in lorwartl tlirection for FWD CL trimpot adjustment antl likewise with REV CL. Warning! To prevent motor damage, do not leave motor shalt locked for more than 2-3 seconds. Caution! Adjusting the CL above 150% of motor rating can cause overheating antl demagnetization of some PM motors. Consult motor manufacturer. VIII. FUNCTION INDICATOR LAMPS. A. Power On (PWR ON) - IMicales that the drive is energized with the AC line. B. Overload (OL) - Indicates the control has reached the current limn set point which has been established by the positon of jumper J2 aM the FWD CL antl REV CL trimpot settings. In transient load applications, it R normal for this Ight to blink. IX. KBMG-212D ACCESSORIES • Model SIMG Bipolar Signal Isolator (PM 8832) -Allows anon-isolated signal source to be used. • MuNi Speed Board (PM 8833) -Provides discrete preset speeds which can be controlled from a PLC. • 4Ouadrant AccellDetel (PM 8834) -Provides independent settings of forward accel, forward decal, reverse accel antl reverse decel. DIN Rall Mounting Kil (PM 9995)-Converts control to standartl DIN Rail Mounting 30 -NOTES- D. IR Compensation (IR Comp)-The IR Comp i5 used to stabilize motor speed under varying loads. Readjust the IR Comp trirnpol as lolwws: i. Initially seI trimpot l0 factory position (appro%imately IO o'clock). ii. Run motor at approximately 30-50 % of rated speed under no load and measure actual speetl. iii. Load motor to ratetl current. Rotate IR Comp trimpot so that loatled speetl is the same as the unloaded speetl measured in the previous step. Control is now compensatetl so that minimal speed change will occur over a wide range of motor load. Note: Excessive IR Comp will cause unstable (oscillatory) operation. E. Maximum Speetl (MA%) -The MAX trimpot is used to set the maximum output voltage of the control which, in turn, sets the maximum speed of the motor. Atljust the MAX trimpot as follows: i. Rotate Main Speed potentiometer to full speed (CWI~ ii. Adjust MAX trimpot to desired maximum motor speed. Note: Do not exceed maximum ratetl RPM of motor since unstable operation may result. F. Response Trlmpol (RESP)-This trimpot determines [he tlynamic response of the control. The factory 5ening is approximately 50 % of full rotation. The Bening may be increased it a taster response is requiretl. Note: If response is se! loo fast, unstable operation may result. 29 NOTES 3 -NOTES- 1 32 FINAL ACCEPTANCE MERIDIAN CITY HALL PUBLIC ART PROJECT ExH-e-T D ADDENDUM B to PROFESSIONAL SERVICES AGREEMENT MERIDIAN CITY HALL PUBLIC ART PROJECT This ADDENDUM B to the Professional Services Agreement for Meridian City Hall Artwork is made thisday of September, 2009 ("Effective Date"), by and between the City of Meridian, a municipal corporation organized under the laws of the State of Idaho ("City"), and J. Amber Conger, on behalf of Refinerii, a Limited Liability Company organized under the laws of the State of Idaho ("Artist"). WHEREAS, on February 3, 2009, City and Artist, on behalf of Refinerii, LLC, entered into an Agreement For Professional Services/Meridian City Hall Artwork ("February 3, 2009 Agreement") that included, in Section III.A.S, a requirement that the parties enter into a mutual indemnification agreement as a condition of the City's Final Acceptance of the artwork designed, created, and installed by Artist pursuant to the February 3, 2009 Agreement; NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which is hereby, and in the February 3, 2009 Agreement, acknowledged and agreed, and in consideration of the mutual promises and covenants herein contained, the Parties agree as follows: I. INDEMNIFICATION. Artist hereby indemnifies and saves and holds harmless City, its employees, elected officials, agents, guests, and/or business invitees, from any and all liabilities, losses, claims, actions, and/or judgments for damages, expenses, and/or injury to any person or property caused or incurred by or as the result of the performance of or failure to perform any work or service under or related to the Febmary 3, 2009 Agreement. Artist specifically hereby indemnifies and saves and holds harmless City from any and all liabilities, losses, claims, actions, judgments for damages, expenses, or injury to any person or to property azising as a result of: A. Artist's failure, or the failure of any of Artist's agent(s), employee(s), or subcontractor(s), to exercise reasonable caze, skill or diligence in the performance of any work or service under or related to the February 3, 2009 Agreement; B. Any breach of any representation, warranty or covenant made by Artist, or by any of Artist's agent(s), employee(s), or subcontractor(s); C. Artist's infringement of or upon any intellectual property rights, whether intentional or unintentional, known or unknown, including any copyright or patent arising out of the reproduction or use in any manner of any plans, designs, drawings, specifications, information, material, sketches, notes or documents created by Artist in the performance of any work or service under the February 3, 2009 Agreement; and/or D. The malfunction, breakage, or failure of the artwork, or any portion or component thereof, created and installed under the February 3, 2009 Agreement. INDEMNITY AGREEb1ENT CITY IIA1.L ENTRYWAY ,4L COUNCIL CHAMBERS ART PAGE 1 of 2 II. WAIVER Artist hereby waives and releases, on behalf of herself, her employees, agents, heirs, executors, administrators, assigns, andlor personal representatives, any and all claims and/or rights for damages she and/or Refinerii, LLC now has or may hereafter have against the City of Meridian and/or its employees, elected officials, agents, guests, and/or business invitees, suffered in connection with or arising out of the performance of any work or service under or related to the February 3, 2009 Agreement. Except as otherwise expressly delineated in the February 3, 2009 Agreement, Artist hereby waives any and all right, title, or interest in items created under, assembled pursuant to, and/or otherwise related to the February 3, 2009 Agreement. III. FEBRUARY 3 2009 AGREEMENT FULLY IN EFFECT. The intent and effect of this Addendum is to fulfill Section III.A.S of the February 3, 2009 Agreement. Except as expressly set forth herein, this Addendum does not otherwise modify or alter any term or condition of the February 3, 2009 Agreement in any way. The February 3, 2009 Agreement remains in full effect, and al! terms and conditions thereof are incorporated in this Addendum as though fully set forth herein. IN WITNESS WHEREOF, the parties hereto have executed this Agreement on the,~Z"~ay of September, 2009. ARTIST: ~,,1~ J.`Amber Conger, Owner/Membl~r`; Refinerii, LCC ~~rCA , ~ Yom': .~a-~• - ,A. CJ ; rJ < <:~r~u~~~,v~` »~ CITY OF MERIDIAN: `\`` ~~~ ~4,,,~ l'~L n , ~2--~ ~ 3 3%'~p ~T ts~ , ,,,, q ~P INDEMNITY AGREEMENT CTTY HALL EYJTRYWAY & COUNCIL CHAMBERS ART STATE OF IDAHO ss: County of ) I HEREBY CERTIFY that on this~~hday of__, 2009, before the undersigned, a Notary Public in the State of Idaho, personally appeared J. Amber Conger, lmown tome to be the person who executed the said instrument, and aclmowledged to me that she executed the same. 1N WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal, the day and year in this certificate first above written. ~,~~~ Diary blic ~Ida_ho Residing at `~I ~ .Idaho My Commission Expves: 3 '~~ -'t c~ City Clerk PAGE 2 of 2